සියලුම හිමිකම් ඇවිරිණි / $m{\psi}$ ලාරු ාණුරාபුහිතාංගුක $m{\omega}$ න් $m{R}$ $m{E}$ $m{E}$

ලි ලංකා විභාග දෙපාර්තමේන්තුව ලි ලංකා විභාග දෙපාර්තම්න්තුව ලි ලංකා විභාග දෙපාර්තමේන්තුව ඉහත්ගතයට පුර්ධකපුණ නිශාන්ගයකට ප්රධානයක් සිටින දැන් සිටින දැන් සිටින දැන් සිටින දැන් සිටින සිටින සිටින සිටින දැන් සිටින සි

අධානයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2021(2022) සහබාට ටොනුන් නூනුරා பන්නි (உயர் නුෆට பர்ட்சை, 2021(2022) General Certificate of Education (Adv. Level) Examination, 2021(2022)

උසස් ගණිතය I **உயர் கணிதம் I** Higher Mathematics I

පැය තුනයි **භුක්<u>ලා</u> ග**ණിத்தியாலம் Three hours අමතර කියවීම් කාලය - මිනිත්තු 10 යි **மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள்** Additional Reading Time - 10 minutes

வினாத்தாளை வாசித்து, வினாக்களைத் தெரிவுசெய்வதற்கும் விடை எழுதும்போது முன்னுரிமை வழங்கும் வினாக்களை ஒழுங்கமைத்துக் கொள்வதற்கும் மேலதிக வாசிப்பு நேரத்தைப் பயன்படுத்துக.

சுட்டெண்				1
(91L/01L-0001			 	ـــا

அறிவுறுத்தல்கள் :

- * இவ்வினாத்தாள் ப**குதி A** (வினாக்கள் 1 10), பகுதி B (வினாக்கள் 11 17) என்னும் இரு பகுதிகளைக் கொண்டது.
- அபகுதி A: எல்லா வினாக்களுக்கும் விடை எழுதுக. ஒவ்வொரு வினாவுக்குமுரிய உமது விடைகளைத் தரப்பட்டுள்ள இடத்தில் எழுதுக. மேலதிக இடம் தேவைப்படுமெனின், நீர் மேலதிகத் தாள்களைப் பயன்படுத்தலாம்.
- * பகுதி B: ஐந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக. உமது விடைகளைத் தரப்பட்டுள்ள தாள்களில் எழுதுக.
- இதுக்கப்பட்டுள்ள நேரம் முடிவடைந்ததும் பகுதி A இன் விடைத்தாளானது பகுதி B இன் விடைத்தாள்களுக்கு மேலே இருக்கத்தக்கதாக இரு பகுதிகளையும் இணைத்துப் பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- ※ வினாத்தாளின் பகுதி B ஐ மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதற்கு அனுமதிக்கப்படும்.

______ பரீட்சகர்களின் உபயோகத்திற்கு மாத்திரம்

	(11) உயர் கணி		
 பகுதி	வினா எண்	புள்ளிகள்	•
	1		
	2		இலக்கத்தில்
	3		எழுத்தில்
	4		
A	5		
A	6		
	7		விடைத்தாள் பரீட்சக
	8		02100/29991011
	9		1
	10		பரிசீலித்தவர்:
	11		2
	12		2
	13		மேற்பாரவை செய்தவர்
В	14		(മെന്നിലു) വെട്ട വേള്ളൂ
	15	<u> </u>	
	16		
	17		*
	மொத்தம்	PAF	PERMASTER.L

	\$ \$	மொத்தம்	_
இலக்கத்தில்			_
எழுத்தில்			ر

குழியீட்டெண்கள்

விடைத்தாள் பரீட்சகர்	
1	
பரிசீலித்தவர்: 2	
மேற்பார்வை செய்தவர்	

		பகுதி A	
1.	காரணிப்படுத்துக: $x^4(y^2-z^2)$	$+ y^4 (z^2 - x^2) + z^4 (x^2 - y^2).$	
	***************************************	•	•••••••••••
	•••••	······································	
	•••••	·	

	***************************************	······································	
	***************************************	······································	
	***************************************	·	***************************************
	••••••	······	••••••
	***************************************	•••••••	
	***************************************		• • • • • • • • • • • • • • • • • • • •
	***************************************		••••••
		·	***************************************
	***************************************	•••••	
	வரையறுக்கப்படும் ஒரு தொட 0 இன் சமவன்மை வகுப்பை	.ர்பு R எனக் கொள்வோம். ${f Z}$ மீது R ஒரு சமவன எழுதுக.	ர்மைத் தொடர்பெனக் காட்டி,
	•••••••		***************************************
			.,,
			4
	· • • • • • • • • • • • • • • • • • • •		······································
	••••••		
	••••••		
			\$
		•••••••••••••••••••••••••••••••••••••••	
•			

Ç	_
-	-
4	^
Ċ	

3.	<i>x</i> ≠ 3 இந்கு	$f(x) = \frac{x}{x-3}$ எனவும்	$x \in \mathbb{R}$ இற்கு g^{-1}	(x) = 2x - 1 எனவும	கொள்வோம்.
	$f^{-1}(x)$ ஐயும்	g(x) ஐயும் கண்டு g	$(2f^{-1}(0)) = \frac{1}{2}$ or $(2f^{-1}(0)) = \frac{1}{2}$	னக் காட்டுக.	

 ;·····	
 	'.

$$\begin{vmatrix} x^3 + x & x+1 & x-2 \\ 2x^3 + 3x + 1 & 3x & 3x - 3 \\ x^3 + 2x + 3 & 2x - 1 & 2x - 1 \end{vmatrix} = x \begin{vmatrix} 1 & 1 & 1 \\ -4 & 0 & 0 \\ 3 & -3 & 3 \end{vmatrix} + \begin{vmatrix} 0 & 1 & -2 \\ -4 & 0 & 0 \\ 3 & -3 & 3 \end{vmatrix}$$

எனக் காட்டுக.

	· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·	
• • • • • • • • • • • • • • • • • • •	ž	
• • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	

	······································	

PAPERMASTER.

5	. பரவளைவு y^2 = $4ax$ மீது உள்ள $P\equiv (ap^2,2ap)\;,Q\equiv (aq^2,2aq)$ ஆகிய புள்ளிகளைத் தொடுக்கும் நாண் பரவளைவின் குவியத்தினூடாகச் செல்கின்றது. $pq=-1$ எனக் காட்டி, பரவளைவுக்கு P இலும் Q இலும்
	வரையப்பட்டுள்ள தொடலிகள் செங்குத்தானவையென உய் த்தறிக.
	••••••
	••••••
	······································
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
6.	$f(x) = \left\{ egin{array}{ll} \dfrac{lpha x + x }{eta x - x } \; ; x eq 0$ எனின் $g(x) = \left\{ egin{array}{ll} \dfrac{\sqrt{1 + x} - 1}{lpha x} \; ; x eq 0$ எனின் எனவும் $-eta \; ; x = 0$ எனின்
	கொள்வோம்; இங்கு <i>α</i> > 0 உம் <i>β</i> ∈ R உம் ஆகும்.
	x=0 இல் $f(x)$ உம் $g(x)$ உம் தொடர்ச்சியானவையெனத் தரப்பட்டுள்ளது. $lpha$, eta ஆகியவற்றின் பெறுமானங்களைக் காண்க்.
	PAPERMASTER.LK

	[x^3	;	<i>x</i> ≥	0 என்	ன்											
,	$f(x) = \begin{cases} 1 & \text{if } x > 0 \end{cases}$	$\begin{cases} x^3 \\ -x^2 \\ -x-2 \end{cases}$;	-1<	x < 0 ส	னின்											
•	, ,	-x-2	;	x≤	_1 எൽ	ின்											i.
6	ரனக் ெ	 காள்வே	rib.	f(x) s	ஆனது	x = 0) இல்	f(x) ถ	பகையி	إسالا	த்தக்ச	த ு எ	னவும்	x = -1	இல் வ	കെധിடப்	
(முடியாத	து எனவ	ம்	காட்டு	Б.												
2	$x \neq -1$	இற்கு $f^{\prime}($	x) g	3 शक्र	துக.												
					••••••	• • • • • •											
			• • • • •							•••••	•••••		•••••				
			• • • • •										••••				`
		•••••		•••••							,,,,,,,						
						· · · · · · ·			• • • • • • •								•
					,				• • • • • •								
				*****					• • • • • •								
													<i>.</i>				
									• • • • • • •						••••••		•••
			••••				•••••				,,,,	,					••
				• • • • • •	•••••	• • • • • •			• • • • • • •								••
																	
				• • • • • • • • • • • • • • • • • • • •													
8.	$x = 0 \in$	ஆக இ	ருக்	 கும் ே	பாது	நிபு	 ந் தை	у =	= 1 @	ற்குக்	 		_ G	ഖകെപ	 பீட்டூச்	சமன்ப	 IT (G
8.	$x = 0 \in \tan y \frac{d}{dx}$	ஆக இ v + <u>1</u> - r	ருக் +(1	 கும் ே + <i>x</i>)e ^x	பாது secy	நிப <u>ு</u> திபு	ந்தை தை தீ	ன <i>y</i> = ர்க்க.	= 1 (2)	 ந்குக்	 	டுப்பෑ	_ 6	ഖകെപ		சமன்ப	
8.	$x = 0 $ e tan $y \frac{d}{dt}$	ஆக இ $\frac{y}{x} + \frac{1}{1+x}$	ருக் +(1	சூம் சே + <i>x</i>)e ^x	பாது sec y	நிப! =0 ஜ	ந் தை	ன <i>y</i> = ர்க்க.	= 1 இ	ற்குக்	 55 L	டுப்பூ	- G	வகைய	 பீட்டுச்	சமன்ப	
8.	$x = 0 \in \tan y \frac{d}{d}$	ஆக இ $\frac{y}{x} + \frac{1}{1+x}$	ருக் +(1	கும் ே + <i>x</i>)e ^x	பாது sec y	நிபு = 0 ஜ	ந்தை இத் தீ	ன <i>y</i> =	= 1 இ	ந்குக்	Б С	டுப்பூ	6	வகைய	ரீட்டுச்	சமன்ப	 m (§
8.	$x = 0 \in \tan y \frac{d}{dt}$	ஆக இ y x + 1 1+x	ருக் + (1	கும் பே	பாது sec y	நிப <u>ு</u>	ந்தை ஓத் தீ	ன <i>y</i> =	= 1 இ	ற்குக்	Б С	டுப்பூ	- 6	வகைய	ீ ட்டூச்	சமன்ப	 m (§
8.	$x = 0 \in \tan y \frac{d}{dt}$	ஆக இ y x + 1 1+x	ருக் + (1	கும் ே + <i>x</i>)e ^x	பாது sec y	நிப! = 0 ஜ	ந்தை	ன <i>y</i> =	= 1 இ	ந்குக்	ж і		- 6	வகைய	ீ ட்டூச்	சமன்ப	
8.	$x = 0 $ e tan $y \frac{d}{d}$	ஆக இ y x + 1 x + 1 + x	ருக் + (1-	கும் சே	பாது sec y	நிப!	ந் தை	ன <i>y</i> = ர்க்க.	= 1 இ	ற்குக்	55 L	டுப்பூ	- G	வகைய	ீ ட்டுச்	சமன்ப	
8.	$x = 0 \in \tan y \frac{d}{dt}$	ஆக இ	ருக் + (1	கும் சே	பாது sec y	நிப! = 0 ஜ	ந்தை	ன <i>y</i> = ர்க்க.	= 1 இ	ற்குக்	55 L		∸ 6	வகைய	ீ ட்டுச்	சமன்ப	 mrG
8.	$x = 0 \in \tan y \frac{d}{dt}$	ஆக இ	ருக் + (1	கும் சே	பாது sec y	நிப! = 0 ஜ	ந்தை	ன <i>y</i> = ர்க்க.	= 1 இ	ந்குக்	55 L	6 ப் ப เ	∸ 6	வகைய	ீ ட்டுச்	சமன்ப	
8.	$x = 0 $ e tan $y \frac{d}{dt}$	<u>у</u> + <u>1</u> + <u>x</u>	ருக் + (1	கும் 6ே + <i>x</i>) <i>e</i> ^x	பாது sec y	நிப!	ந்தை	ன <i>y</i> = ர்க்க.	= 1 @	ற்குக்	55 L	டுப்ப <u>t</u>	∸ 6	ഖകെധ	ீ ட்டுச்	சமன்ப	
8.	$x = 0 $ e tan $y \frac{d}{d}$	ஆக இ	ருக் + (1	கும் 6ே + <i>x</i>) <i>e</i> ^x	பாது sec y	நிப!	ந்தை	ன <i>y</i> = ர்க்க.	= 1 @	ற்குக்	55 L	டுப்ப <u>ா</u>	-6	ഖകെധ	பீட்டுச் 	சமன்ப	
8.	$x = 0 $ e tan $y \frac{d}{d}$	ஆக இ $\frac{y}{x} + \frac{1}{1+x}$	ருக் + (1-	கும் 6ே + <i>x</i>) <i>e</i> ^x	பாது sec y	நிப!	ந்தை இத் தீ	ன y =	= 1 @	ந்குக் 	65 L	டுப்ப <u>ா</u>	-6	ഖകെപ	ரீட்டுச் 	சமன்ப	
8.	$x = 0 \in \tan y \frac{d}{dt}$	ஆக இ y + 1 x + 1 + x	ருக் + (1:	கும் 9ே + x)e ^x	பாது sec y	நிப! =0 ஜ	ந்தை இத் தீ	ன <i>y</i> =	= 1 @	ந்குக் 	65 L	டுப்ப <u>ா</u>		வகைய	பீட்டுச் 	சமன்ப	
8.	$x = 0 \in \tan y \frac{d}{dt}$	ஆக இ y + 1 x + 1 + x	顶 慈 + (1:	கும் 9ே + x)e ^x	பாது sec y	நிப!	ந்தை	ன y =	= 1 (2)	ந்குக் 	Б С	<u> </u>		வகைய	பீட்டுச்	சமன்ப	
8.	$x = 0 \in \tan y \frac{d}{dt}$	ஆக இ y + 1 x + 1 + x	顶 慈 + (1·	கும் பே + x)e ^x	பாது sec y	நிப!	ந்தை	ன <i>y</i> =	= 1 (2)	ந்குக் 	Б С	<u> </u>		வகைய	ரீட்டுச்	சமன்ப	
8.	$x = 0 \in \tan y \frac{d}{dt}$	ஆக இ y + 1 x + 1 + x	ருக் +(1	கும் பே + x)e ^x	பாது sec y	நிப!	ந் தை இத் தீ	ன y = ர்க்க.	= 1 (2)	ந்குக்	55 L	В ப்பŧ		வகைய	l'i G d	சமன்ப	

9.	$\left egin{array}{cccccccccccccccccccccccccccccccccccc$	வாம்.
	$\int_{-a}^{a} f(x) dx = \int_{0}^{a} \left\{ f(a-x) + f(a+x) \right\} dx$ எனக் காட்டுக.	
	•••••••••••••••••••••••••••••••••••••••	
		:
		•••••
		••••
	••••••••••••••••••••••••••••••••••••	
		•
0. <i>i</i>	$oldsymbol{ heta}$. $r=2\cos heta+4\sin heta$ இனால் முனைவுச் சமன்பாடு தரப்படும் வளையியின் படத்தைப் பரு	
		ധലയാന്ത് പെണ്ട
G	மேற்குறித்த வளையி மீது முனைவாள்கூறுகள் $\left(4,rac{\pi}{2} ight)$ உள்ள புள்ளியில் இருக்கும் தொட சமன்பாட்டைக் காண்க.	ഥபடியாக வரைக லியின் முனைவுச்
G	மேற்குறித்த வளையி மீது முனைவாள்கூறுகள் $\left(4,rac{\pi}{2} ight)$ உள்ள பள்ளியில் இருக்கும் கொ	மபடியாக வரைக லியின் முனைவுச்
G	மேற்குநித்த வளையி மீது முனைவாள்கூறுகள் $\left(4,rac{\pi}{2} ight)$ உள்ள புள்ளியில் இருக்கும் தொட சமன்பாட்டைக் காண்க.	லியின் முனைவுச்
G	மேற்குறித்த வளையி மீது முனைவாள்கூறுகள் $\left(4,rac{\pi}{2} ight)$ உள்ள பள்ளியில் இருக்கும் கொ	லியின் முனைவுச்
G	மேற்குநித்த வளையி மீது முனைவாள்கூறுகள் $\left(4,rac{\pi}{2} ight)$ உள்ள புள்ளியில் இருக்கும் தொட சமன்பாட்டைக் காண்க.	லியின் முனைவுச்
G	மேற்குநித்த வளையி மீது முனைவாள்கூறுகள் $\left(4,rac{\pi}{2} ight)$ உள்ள புள்ளியில் இருக்கும் தொட சமன்பாட்டைக் காண்க.	லியின் முனைவுச்
G	மேற்குநித்த வளையி மீது முனைவாள்கூறுகள் $\left(4,rac{\pi}{2} ight)$ உள்ள புள்ளியில் இருக்கும் தொட சமன்பாட்டைக் காண்க.	லியின் முனைவுச்
G	மேற்குநித்த வளையி மீது முனைவாள்கூறுகள் $\left(4,rac{\pi}{2} ight)$ உள்ள புள்ளியில் இருக்கும் தொட சமன்பாட்டைக் காண்க.	லியின் முனைவுச்
G	மேற்குநித்த வளையி மீது முனைவாள்கூறுகள் $\left(4,rac{\pi}{2} ight)$ உள்ள புள்ளியில் இருக்கும் தொட சமன்பாட்டைக் காண்க.	லியின் முனைவுச்
G	மேற்குநித்த வளையி மீது முனைவாள்கூறுகள் $\left(4,rac{\pi}{2} ight)$ உள்ள புள்ளியில் இருக்கும் தொட சமன்பாட்டைக் காண்க.	லியின் முனைவுச்
G	மேற்குநித்த வளையி மீது முனைவாள்கூறுகள் $\left(4,rac{\pi}{2} ight)$ உள்ள புள்ளியில் இருக்கும் தொட சமன்பாட்டைக் காண்க.	லியின் முனைவுச்
G	மேற்குநித்த வளையி மீது முனைவாள்கூறுகள் $\left(4,rac{\pi}{2} ight)$ உள்ள புள்ளியில் இருக்கும் தொட சமன்பாட்டைக் காண்க.	லியின் முனைவுச்
G	மேற்குநித்த வளையி மீது முனைவாள்கூறுகள் $\left(4,rac{\pi}{2} ight)$ உள்ள புள்ளியில் இருக்கும் தொட சமன்பாட்டைக் காண்க.	லியின் முனைவுச்
G	மேற்குநித்த வளையி மீது முனைவாள்கூறுகள் $\left(4,rac{\pi}{2} ight)$ உள்ள புள்ளியில் இருக்கும் தொட சமன்பாட்டைக் காண்க.	லியின் முனைவுச்
G	மேற்குநித்த வளையி மீது முனைவாள்கூறுகள் $\left(4,rac{\pi}{2} ight)$ உள்ள புள்ளியில் இருக்கும் தொட சமன்பாட்டைக் காண்க.	லியின் முனைவுச்
G	மேற்குநித்த வளையி மீது முனைவாள்கூறுகள் $\left(4,rac{\pi}{2} ight)$ உள்ள புள்ளியில் இருக்கும் தொட சமன்பாட்டைக் காண்க.	லியின் முனைவுச்

හියලුම හිමිකම් ඇවිරිණි / முழுப் பதிப்புரிமையுடையது $|All\ Rights\ Reserved|$

ලී ලංකා විතාශ දෙපාර්තමේන්තුව ලී ලංකා විහාශ දෙපාර්ත**ළ**ත්තුව සියු වෙන්වා සියු ප්රධාල සියු විතාශ දෙපාර්තමේන්තුව ලී ලංකා විහාශ දෙපාර්තමේන්තුව இலங்கைப் பரீட்சைத் திணைக்களம் இலங்கைப் பළ*ත්තේ* නිසුන්ත්තුව ලී ලංකා විතාශ ප්රධාල කියුණ නිසුන්ත්තුව ලී ලංකා විතාශ ප්රධාල සියුණ නිසුන්ත්තුව ලී ලංකා විතාශ ප්රධාල සියුණ ස

අධායන පොදු සහතික පතු (උසස් පෙළ) වීහාගය, 2021(2022) සහ්භාධ பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2021 (2022) General Certificate of Education (Adv. Level) Examination, 2021 (2022)

උසස් ගණිතය l **உயர் கணிதம்** l Higher Mathematics l

பகுதி B

🗱 ஜந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக.

- $11.(a)\ A,B,C$ ஆகியன் ஓர் அகிலத் தொடை S இன் தொடைப்பிரிவுகளெனக் கொள்வோம். நீங்கள் பயன்படுத்தும் தொடை அட்சரகணித விதிகளைத் தெளிவாகக் குறிப்பிட்டு,
 - (i) $(A-B) \cup (A-C) = A (B \cap C)$,
 - (ii) $(A'-B)\cap C' = (A'-C)-(B-C)$

எனக் காட்டுக; இங்கு A-B ஆனது $A\cap B'$ இனால் வரையறுக்கப்படுகின்றது.

- (b) உதைபந்தாட்ட, கூடைப்பந்தாட்ட, கைப்பந்தாட்ட விளையாட்டு வீரர்களின் குழு ஒன்றில்
 - (i) 8 விளையாட்டு வீரர்கள் உதைபந்தாட்டத்தையும் கூடைப்பந்தாட்டத்தையும்
 - (ii) 5 விளையாட்டு வீரர்கள் உதைபந்தாட்டத்தையும் கைப்பந்தாட்டத்தையும்
 - (iii) 7 விளையாட்டு வீரர்கள் கூடைப்பந்தாட்டத்தையும் கைப்பந்தாட்டத்தையும்
 - (iv) 29 விளையாட்டு வீரர்கள் உதைபந்தாட்டத்தை அல்லது கூடைப்பந்தாட்டத்தை
 - (v) 30 விளையாட்டு வீரர்கள் உதைபந்தாட்டத்தை அல்லது கைப்பந்தாட்டத்தை
 - (vi) 25 விளையாட்டு வீரர்கள் கூடைப்பந்தாட்டத்தை அல்லது கைப்பந்தாட்டத்தை விளையாடத்தக்கவர்களெனத் தரப்பட்டுள்ளது. எத்தனை விளையாட்டு வீரர்கள் உதைபந்தாட்டத்தை

விளையாடத்தக்கவர்களெனக் காண்க.

- 12.(a) a, b, c > 0 எனக் கொள்வோம்.
 - (i) $ab \le \frac{1}{2}(a^2 + b^2)$ எனக் காட்டி, $abc^2 \le \frac{1}{4}(a^4 + b^4 + 2c^4)$ என உய்த்தறிக.
 - (ii) **இதிலிருந்து,** $abc \le \left(\frac{a^4 + b^4 + c^4}{a + b + c}\right)$ எனக் காட்டுக. a = b = c ஆக இருந்தால் இருந்தால் மாத்திரம் சமம் இருக்கின்றதெனக் காட்டுக.
 - (b) உருமாற்றம் $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 4 & -1 \\ 6 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ ஆனது xy தளத்தில் உள்ள புள்ளிகளை x'y' தளத்தில் உள்ள புள்ளிகளை x'y' தளத்தில் உள்ள புள்ளிகளுக்குப் படமாக்குகின்றது.

தம் மீதே படமாக்கப்படும் நேர்கோடுகளின் சமன்பாடுகளைக் காண்க. x'y' - தளத்தில் கோடு y=2x-1 இன் விம்பத்தைக் காண்க.

PAPERMASTER.LK

- 13. ஒரு நேர் நிறைவெண் சுட்டிக்குத் **த மோய்வரின் தேந்றத்தைக்** குறிப்பிட்டு, நிறுவுக.
 - **த மோய்வரின் தேற்றத்தைப்** பயன்படுத்தி,

$$\cos 4\theta = \cos^4 \theta - 6\cos^2 \theta \sin^2 \theta + \sin^4 \theta$$
 எனவும்
$$\sin 4\theta = 4\cos^3 \theta \sin \theta - 4\cos \theta \sin^3 \theta$$
 எனவும் காட்டுக்.

இதிலிருந்து,
$$\cot 4\theta = \frac{\cot^4 \theta - 6\cot^2 \theta + 1}{4(\cot^3 \theta - \cot \theta)}$$
 எனக் காட்டுக.

$$\cot 4\theta = \sqrt{3}$$
 ஐத் தீரத்து, $x = \cot \left(\frac{\pi}{24}\right)$ ஆனது சமன்பாடு $x^4 - 4\sqrt{3}x^3 - 6x^2 + 4\sqrt{3}x + 1 = 0$ இன் ஒரு தீரவெனக் காட்டுக.

இச்சமன்பாட்டின் ஏனைய தீர்வுகளையும் k இன் பெறுமானங்களைக் குறிப்பிட்டு வடிவம் $\cot\left(\frac{k\pi}{24}\right)$ இல் எழுதுக $\cot\frac{\pi}{24} + \cot\frac{7\pi}{24} + \cot\frac{13\pi}{24} + \cot\frac{19\pi}{24} = 4\sqrt{3}$ என உய்த்தறிக.

14. (a) C_1 , C_2 ஆகியன முறையே $y=(x-1)^2+1$, $(y-2)^2=16x$ ஆகியவற்றினால் தரப்படும் வளையிகளெனக் கொள்வோம். C_1 , C_2 ஆகியவற்றின் வரைபுகளை அவற்றின் வெட்டுப் புள்ளிகளின் ஆள்கூறுகளைக் காட்டி ஒரே வரிப்படத்தில் பரும்படியாக வரைக.

 C_1 , C_2 ஆகிய வளையிகளினால் வரைபுற்ற பிரதேசம் R இன் பரப்பளவைக் காண்க.

பிரதேசம் R ஐக் கோடு y=1 பற்றி 2π ஆரையன்களினூடாகச் சுழற்றுவதன் மூலம் பிறப்பிக்கப்படும் திண்மத்தின் கனவளவையும் காண்க.

(b) ஒரு வளையிக் குடும்பம் வகையீட்டுச் சமன்பாடு $\dfrac{\mathrm{d}y}{\mathrm{d}x} = \dfrac{2x-y+5}{-x+2y+5}$ இனால் வரையறுக்கப்படுகின்றது. உற்பத்தியினூடாகச் செல்லும் இக்குடும்பத்திற்குரிய வளையியின் சமன்பாட்டைக் காண்க.

$$15. (a) \ n \in \mathbb{Z}^+$$
இற்கு $I_n = \int_{0}^{1} x^n (1-x)^{\frac{3}{2}} \, \mathrm{d}x$ எனக் கொள்வோம். $n \geq 2$ இற்கு $I_n = \left(\frac{0}{2n+5}\right) I_{n-1}$ எனக் காட்டுக. இதிலிருந்து, $\int_{0}^{1} x^4 (1-x)^{\frac{3}{2}} \, \mathrm{d}x$ இன் பெறுமானத்தைக் காண்க.

(b) x^3 இலான உறுப்பு (உட்பட) வரைக்கும் x இன் ஏறு வலுக்களில் $\cos x$, e^x ஆகியவற்றின் மக்குளோரின் தொடர்களைக் காண்க.

இதிலிருந்து, x^3 இலான உறுப்பு (உட்பட) வரைக்கும் x இன் ஏறு வலுக்களில் $e^{-x}\cos(x^2)$ இன் மக்குளோரின் தொடரைப் பெறுக.

இதனைப் பயன்படுத்தி, $\int\limits_0^{0.1}xe^{-x}\cos(x^2)\mathrm{d}x$ இந்கு ஓர் அண்ணளவுப் பெறுமானத்தைக் காண்க.

PAPERMASTER.LK

16. நீள்வளையம் $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ இற்குப் புள்ளி $(a\cos\theta, b\sin\theta)$ இல் உள்ள தொடலியின் சமன்பாடு $bx\cos\theta + ay\sin\theta = ab$ எனவும் வட்டம் $x^2 + y^2 = r^2$ இந்கு $(r\cos\phi, r\sin\phi)$ இல் உள்ள தொடலியின் சமன்பாடு $x\cos\phi + y\sin\phi = r$ எனவும் காட்டுக.

C ஆனது வட்டம் $x^2+y^2=36$ எனவும் S ஆனது நீள்வளையம் $\frac{x^2}{9^2}+\frac{y^2}{4^2}=1$ எனவும் கொள்வோம்.

வட்டம் C இனதும் நீள்வளையம் S இனதும் ஒரு வெட்டுப் புள்ளி $(6\cos\phi, 6\sin\phi)$ எனக் கருதுவோம். $\tan^2\phi = \frac{4}{9}$ எனக் காட்டுக.

இதிலிருந்து அல்லது வேறு விதமாக, நீள்வளையம் S இனதும் வட்டம் C இனதும் வெட்டுப் புள்ளிகளில் அவற்றுக்கு வரையப்பட்டுள்ள தொடலிகளுக்கிடையே இருக்கும் கூர்ங்கோணம் $an^{-1}\left(\frac{5}{9}\right)$ எனக் காட்டுக.

- 17.(a) $x \in \mathbb{R}$ இற்கு $f(x) = \frac{\cos^2 x}{2 + 2\sin x \cos x + \sin^2 x}$ எனக் கொள்வோம்.
 - (i) $x \in \mathbb{R}$ இற்கு $0 \le f(x) \le \frac{3}{5}$ எனக் காட்டுக.
 - (ii) $f(x) = \frac{3}{5}$, f(x) = 0 என்னும் சமன்பாடுகளைத் தீர்த்து, $0 \le x \le \frac{\pi}{2}$ இற்கு y = f(x) இன் வரைபைப் பரும்படியாக வரைக.
 - (b) பின்வரும் அட்டவணை 0 இற்கும் 1.2 இற்குமிடையே நீளம் 0.2 ஆகவுள்ள ஆயிடைகளில் x இன் பெறுமானங்களுக்குச் சார்பு f(x) இன் பெறுமானங்களை இரண்டு தசம தானங்களுக்குச் சரியாகத் தருகின்றது.

	عي حي			_				
	x	0.0	0.2	0.4	0.6	0.8	1.0	1.2
	f(x)		2.01	0.00	1.11	1.65	2.42	1.61
- 3	J (**)							

சிம்சனின் நெறியைப் பயன்படுத்தி, $I=\int\limits_0^{1.2}f(x)\mathrm{d}x$ இற்கு ஓர் அண்ணளவுப் பெறுமானத்தைக் காண்க.

இதிலிருந்து, $\int\limits_0^{1.2} x \, f'(x) \, \mathrm{d}x$ இற்கு ஓர் அண்ணளவுப் பெறுமானத்தைக் காண்க.

සියල ම	තිමිනම්	ඇවිරුම / ගැරෙ	ប្រជាប់ប្រាស្រប់បានក្រាស្រី /All	Rights Reserved
ang 9	$\omega \omega \omega \omega$	COCON (P(P)	DENDERS TO THE PROPERTY OF THE	Tree trees trees

ල ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව இலங்கைப் பரீட்சைத் திணைக்களம் இலங்கைப் ப**ர் செரிவது கொடியம் தொள்கில் இருந்து இருந்**

අධානයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2021(2022) கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2021(2022) General Certificate of Education (Adv. Level) Examination, 2021(2022)

උසස් ගණිතය II உயர் கணிதம் II Higher Mathematics II

පැය තුනයි **மூன்று மணித்தியாலம்** Three hours **අමතර කියවීම් කාලය** மேலதிக வாசிப்பு நேரம் මිනිත්තු 10 යි

ரம் - 10 நிமிடங்கள் ne - 10 minutes

Three hours

Additional Reading Time - 10 minutes

வினாத்தாளை வாசித்து, வினாக்களைத் தெரிவுசெய்வதற்கும் விடை எழுதும்போது முன்னூரிமை வழங்கும்
வினாக்களை ஒழுங்கமைத்துக் கொள்வதற்கும் மேலதிக வாசிப்பு நேரத்தைப் பயன்படுத்துக.

					$\overline{}$
					1 1
சுட்டெண்				1 1	
어느에느		1 1	1 '	1	1 1
l .	II			l	

அறிவுறுத்தல்கள்:

- st இவ்வினாத்தாள் **பகுதி f A** (வினாக்கள் 1 10), **பகுதி f B** (வினாக்கள் 11 17) என்னும் இரு பகுதிகளைக் கொண்டது.
- * பகுதி A: எல்லா வினாக்களுக்கும் விடை எழுதுக. ஒவ்வொரு வினாவுக்குமுரிய உமது விடைகளைத் தரப்பட்டுள்ள இடத்தில் எழுதுக. மேலதிக இடம் தேவைப்படுமெனின், நீர் மேலதிகத் தாள்களைப் பயன்படுத்தலாம்.

* பகுதி B: ஐந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக. உமது விடைகளைத் தரப்பட்டுள்ள தாள்களில் எழுதுக.

- இதுக்கப்பட்டுள்ள நேரம் முடிவடைந்ததும் **பகுதி A** இன் விடைத்தாளானது **பகுதி B** இன் விடைத்தாள்களுக்கு மேலே இருக்கத்தக்கதாக இரு பகுதிகளையும் இணைத்துப் பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையவிக்க
- ※ வினாத்தாளின் **பகுதி B ஐ மாத்திரம்** பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதற்கு அனுமதிக்கப்படும்.
- 🔆 புள்ளிவிபர அட்டவணை வழங்கப்படும்.
- 💥 g புவியீர்ப்பினாலான ஆர்முடுகலைக் குறிக்கின்றது.

பரீட்சகர்களின் உபயோகத்திற்கு மாத்திரம்

	(11) உயர் கணித	
பகுதி	வினா எண்	புள்ளிகள்
	1	
	2	
	3	
1	4	
	5	<u> </u>
A	6	<u> </u>
	7	
	8	
	9	
	10	
	11	
	12	
	13	
В	14	
	15	
ľ	16	
	17	
	மொத்தம்	PA

	மொத்தம்
இலக்கத்தில்	
எழுத்தில்	

குறியீட்டெண்கள<u>்</u>

விடைத்தாள் பரீட்சகர்	
1 பரிசீலித்தவர்:	
2	
மேற்பார்வை செய்தவர்	

PERMASTER.LK

1. $A \equiv (-2, -1, -1), B \equiv (3, 1, 2), C = (1, \alpha, -1)$	
$\frac{2\pi}{2}$ Applie $ \overrightarrow{OA} = \overrightarrow{OC} $ Applie $ \overrightarrow{OR} ^2$	\overrightarrow{O}) ஆகியன \overrightarrow{OA} இந்கும் \overrightarrow{OC} இந்குமிடையே உள்ள கோண \mathbf{E} தக்கதாக உள்ள மூன்று புள்ளிகளெனக் கொள்வோம்; இங்கு
lpha,eta>0 ஆகும். $lpha,eta$ ஆகியவற்றின் பெறும	ு இங்கு உள்ள மூன்று புள்ளக்களனக் கொள்வோம்; இங்கு
	······································
	•••••••••••••••••••••••••••••••••••••••
$\mathbf{F}_1 = 3\mathbf{I} + \alpha \mathbf{j} + \mathbf{k}$, $\mathbf{F}_2 = \mathbf{i} + \beta \mathbf{j} + \mathbf{k}$ என்னும் இரு	த விசைகள் முறையே $\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$, $\gamma \mathbf{i} + 8\mathbf{k}$ என்னும் தானக்
4i + 4j + 4k இனூடாகச் செல்கின்றனவெனக்	இங்கு $lpha,eta,\gamma\in\mathbb{R}$. அவற்றின் தாக்கக் கோடுகள் புள்ளி தரப்பட்டுள்ளது. $lpha,eta,\gamma$ ஆகியவற்றின் பெறுமானங்களைக்
காண்க. அவற்றின் விளையுளின் தாக்கக் கோ	ட்டின் சமன்பாட்டை எழுதுக.
	•••••••••••••••••••••••••••••••••••••••

_	
4	

3.	3. ஆரை a ஐயும் உயரம் $4a$ ஐயும் அடர்த்தி σ ஐயும் உடைய ஒரு சீரான அடர்த்தி $ ho$ ஐ உடைய ஓர் ஏகவினத் திரவத்தில், அதன் உச்சி திரவத்தின் சு σ	யாதன் மேந்பர்ப்புக்கு மேண்
	தூரம் a இல் இருக்குமாறு, பகுதியாக அமிழ்ந்து மிதக்கின்றது. விகிதம் $\dfrac{\sigma}{ ho}$ இ	1 1
	திரவத்தில் முழுமையாக அமிழ்வதற்குக் கூம்பின் உச்சியுடன் இணைக்கப்படத்த	க்க துணிக்கையின் குறைந்த
	பட்ச நிறையைக் காண்க.	
		ľ
	••••••	
		ľ

	•••••••••••••••••••••••••••••••••••••••	
4.	4. நேரம் t இல் ஒரு துணிக்கை P இன் ஆர்முடுகல் $a(t)=6t\mathbf{i}-\cos t\mathbf{j}+e^t\mathbf{k}$ இ	இனால் தரப்படுகின்றது. $t=0$
	இல் துணிக்கை P இன் தானக் காவியும் வேகமும் முறையே $\mathbf{j}+\mathbf{k},\mathbf{k}$ ஆகும்.	நேரம் † இல் P இன் தானக்
	காவியைக் காண்க.	
		2
		;
		4,
		<u></u>
		2
	PAPERAASTERLK	

5.	ஒவ்வொன்றினதும் திணிவு m ஆகவுள்ள P,Q என்னும் இரு துணிக்கைகள் ஒவ்வொன்றும் ஓர் ஒப்பமான கிடைத் தளத்தில் ஓர் ஒப்பமான நிலைக்குத்துச் சுவரை நோக்கிக் A கதி u உடன் இயங்கிக் கோடு DE இல் சுவரைச் சந்திக்கின்றன. Q ஆனது P இற்கு முன்பாக X ஐ அடைந்து X இல் இரு துணிக்கைகளும் சுவருடன் மோதுகின்றன. P இன் இயக்கத் திசை AX இன் வழியே உள்ளது; இங்கு $A\hat{X}D=30^\circ$ ஆகும். Q இன் இயக்கத் திசை BX வழியே உள்ளது; இங்கு $B\hat{X}D=60^\circ$ ஆகும். P,Q ஆகிய இரண்டும் சுவருடன் மோதிய பின்னர் ஒரே திசை XY இல் இயங்குகின்றன (உருவைப் பார்க்க P இற்கும் சுவருக்குமிடையே உள்ள மீளமைவுக் குணகம் e ஆகும். Q இற்கும் சுவருக்குமிடையே உள்ள கொட்டுக. கவருடன் மோதிய பின்னர் P,Q ஆகியவற்றின் கதிகளுக்கிடையே உள்ள விகிதம் $\sqrt{3}:1$ எனக் காட்டுக.
	•••••
•	
•	
•	
•	
•	
(ថ្ង	a நீளமும் m திணிவும் உள்ள ஒரு சீரான கோல் OA நிலைப்படுத்தப்பட்ட முனை O பற்றி ஒரு நிலைக்குத்துத் தளத்தில் சுயாதீனமாகச் சுழலத்தக்கது. அது கீழ்முக நிலைக்குத்துடன் கோணம் $\frac{2\pi}{3}$ ஐ ஆக்கும் ஒரு தானத்தில் தாங்கப்பட்டு, பின்னர் விடுவிக்கப்படுகின்றது. கோல் கீழ்முக நிலைக்குத்துடன் கோணம் θ ஐ ஆக்கும்போது
v	காணக் கதி $\dot{\theta}$ ஆனது $a\dot{\theta}^2 = \frac{3}{4}g(1+2\cos\theta)$ ஐத் திருப்தியாக்குகின்றதெனக் காட்டுக.
	······································
•••	
•••	PAPERWASTER.LK

7.	ஓர் உணவகத்தில் எழுமாற்றாகத் தெரிவு செய்யப்பட்ட வாடிக்கையாளர் ஒருவர் தனது காலையுணவுடன் ஒரு கோப்பை தேநீருக்காகக் கட்டளையிடுவதற்கான நிகழ்தகவு 0.6 ஆகும். 5 வாடிக்கையாளர்களைக் கொண்ட ஓர் எழுமாற்று மாதிரி தெரிவு செய்யப்பட்டால், (i) செப்பமாக ஒரு வாடிக்கையாளர், ii) 3 இற்குக் குறைந்த வாடிக்கையாளர்கள்,	
	தமது காலையுணவுடன் தேநீருக்காகக் கட்டளையிடுவதற்கான நிகழ்தகவைக் காண்க.	l

		İ
		ļ
8.	ஒரு நகரப் பிரதேசத்தில் எழுமாற்றாக ஒரு மாதத்திற்கு இரு தடவை மின் துண்டிப்புகள் ஏற்படுகின்றன. ஒரு குறித்த மாதத்தில்	
8.	ஒரு நகரப் பிரதேசத்தில் எழுமாற்றாக ஒரு மாதத்திற்கு இரு தடவை மின் துண்டிப்புகள் ஏற்படுகின்றன. ஒரு குறித்த மாதத்தில் (i) மின் துண்டிப்புகள் இல்லாமைக்கான,	
8.	ஒரு நகரப் பிரதேசத்தில் எழுமாற்றாக ஒரு மாதத்திற்கு இரு தடவை மின் துண்டிப்புகள் ஏற்படுகின்றன. ஒரு குறித்த மாதத்தில்	
8.	ஒரு நகரப் பிரதேசத்தில் எழுமாற்றாக ஒரு மாதத்திற்கு இரு தடவை மின் துண்டிப்புகள் ஏற்படுகின்றன. ஒரு குறித்த மாதத்தில் (i) மின் துண்டிப்புகள் இல்லாமைக்கான,	
8.	ஒரு நகரப் பிரதேசத்தில் எழுமாற்றாக ஒரு மாதத்திற்கு இரு தடவை மின் துண்டிப்புகள் ஏற்படுகின்றன. ஒரு குறித்த மாதத்தில் (i) மின் துண்டிப்புகள் இல்லாமைக்கான, (ii) குறைந்தபட்சம் 2 மின் துண்டிப்புகளேனும் இருப்பதற்கான,	
8.	ஒரு நகரப் பிரதேசத்தில் எழுமாற்றாக ஒரு மாதத்திற்கு இரு தடவை மின் துண்டிப்புகள் ஏற்படுகின்றன. ஒரு குறித்த மாதத்தில் (i) மின் துண்டிப்புகள் இல்லாமைக்கான, (ii) குறைந்தபட்சம் 2 மின் துண்டிப்புகளேனும் இருப்பதற்கான,	
8.	ஒரு நகரப் பிரதேசத்தில் எழுமாற்றாக ஒரு மாதத்திற்கு இரு தடவை மின் துண்டிப்புகள் ஏற்படுகின்றன. ஒரு குறித்த மாதத்தில் (i) மின் துண்டிப்புகள் இல்லாமைக்கான, (ii) குறைந்தபட்சம் 2 மின் துண்டிப்புகளேனும் இருப்பதற்கான,	
8.	ஒரு நகரப் பிரதேசத்தில் எழுமாற்றாக ஒரு மாதத்திற்கு இரு தடவை மின் துண்டிப்புகள் ஏற்படுகின்றன. ஒரு குறித்த மாதத்தில் (i) மின் துண்டிப்புகள் இல்லாமைக்கான, (ii) குறைந்தபட்சம் 2 மின் துண்டிப்புகளேனும் இருப்பதற்கான,	
8.	ஒரு நகரப் பிரதேசத்தில் எழுமாற்றாக ஒரு மாதத்திற்கு இரு தடவை மின் துண்டிப்புகள் ஏற்படுகின்றன. ஒரு குறித்த மாதத்தில் (i) மின் துண்டிப்புகள் இல்லாமைக்கான, (ii) குறைந்தபட்சம் 2 மின் துண்டிப்புகளேனும் இருப்பதற்கான,	
8.	ஒரு நகரப் பிரதேசத்தில் எழுமாற்றாக ஒரு மாதத்திற்கு இரு தடவை மின் துண்டிப்புகள் ஏற்படுகின்றன. ஒரு குறித்த மாதத்தில் (i) மின் துண்டிப்புகள் இல்லாமைக்கான, (ii) குறைந்தபட்சம் 2 மின் துண்டிப்புகளேனும் இருப்பதற்கான,	
8.	ஒரு நகரப் பிரதேசத்தில் எழுமாற்றாக ஒரு மாதத்திற்கு இரு தடவை மின் துண்டிப்புகள் ஏற்படுகின்றன. ஒரு குறித்த மாதத்தில் (i) மின் துண்டிப்புகள் இல்லாமைக்கான, (ii) குறைந்தபட்சம் 2 மின் துண்டிப்புகளேனும் இருப்பதற்கான,	
8.	ஒரு நகரப் பிரதேசத்தில் எழுமாற்றாக ஒரு மாதத்திற்கு இரு தடவை மின் துண்டிப்புகள் ஏற்படுகின்றன. ஒரு குறித்த மாதத்தில் (i) மின் துண்டிப்புகள் இல்லாமைக்கான, (ii) குறைந்தபட்சம் 2 மின் துண்டிப்புகளேனும் இருப்பதற்கான,	
8.	ஒரு நகரப் பிரதேசத்தில் எழுமாற்றாக ஒரு மாதத்திற்கு இரு தடவை மின் துண்டிப்புகள் ஏற்படுகின்றன. ஒரு குறித்த மாதத்தில் (i) மின் துண்டிப்புகள் இல்லாமைக்கான, (ii) குறைந்தபட்சம் 2 மின் துண்டிப்புகளேனும் இருப்பதற்கான,	
8.	ஒரு நகரப் பிரதேசத்தில் எழுமாற்றாக ஒரு மாதத்திற்கு இரு தடவை மின் துண்டிப்புகள் ஏற்படுகின்றன. ஒரு குறித்த மாதத்தில் (i) மின் துண்டிப்புகள் இல்லாமைக்கான, (ii) குறைந்தபட்சம் 2 மின் துண்டிப்புகளேனும் இருப்பதற்கான,	
8.	ஒரு நகரப் பிரதேசத்தில் எழுமாற்றாக ஒரு மாதத்திற்கு இரு தடவை மின் துண்டிப்புகள் ஏற்படுகின்றன. ஒரு குறித்த மாதத்தில் (i) மின் துண்டிப்புகள் இல்லாமைக்கான, (ii) குறைந்தபட்சம் 2 மின் துண்டிப்புகளேனும் இருப்பதற்கான,	
8.	ஒரு நகரப் பிரதேசத்தில் எழுமாற்றாக ஒரு மாதத்திற்கு இரு தடவை மின் துண்டிப்புகள் ஏற்படுகின்றன. ஒரு குறித்த மாதத்தில் (i) மின் துண்டிப்புகள் இல்லாமைக்கான, (ii) குறைந்தபட்சம் 2 மின் துண்டிப்புகளேனும் இருப்பதற்கான,	

	$^{\prime}$. ஒரு தொடர் எழுமாற்று மாறி X இன் நிகழ்தகவு அடர்த்திச் சார்பு $f(x)$ ஆனது							
	$f(x) = \left\{ egin{array}{ll} rac{1}{c} x^2 & , & x \leq 1 \ ext{@ற்க} \ 0 & , & அவ்வாறு இல்லாவிட்டால்} \end{array} ight.$							
0 , அவ்வாறு இல்லாவிட்டால்								
	இனால் தரப்படுகின்றது; இங்கு c ஒரு மாநிலி. c இன் பெறுமானத்தைக் காண்க $.$							
	மேலும் $E(X),V(X)$ ஆகியவற்றைக் காண்க.							
0.	ஒரு கோடாத கனவடிவத் தாயக்கட்டை ஒரு தடவை உருட்டப்படுகின்றது. கிலு க்கும் பொயுமானம்							
0.	ஒரு கோடாத கனவடிவத் தாயக்கட்டை ஒரு தடவை உருட்டப்படுகின்றது. கிடைக்கும் பொமானம்							
0.								
0.	ஒரு கோடாத கனவடிவத் தாயக்கட்டை ஒரு தடவை உருட்டப்படுகின்றது. கிடைக்கும் பொமானம்							
0.	ஒரு கோடாத கனவடிவத் தாயக்கட்டை ஒரு தடவை உருட்டப்படுகின்றது. கிடைக்கும் பொமானம்							
0.	ஒரு கோடாத கனவடிவத் தாயக்கட்டை ஒரு தடவை உருட்டப்படுகின்றது. கிடைக்கும் பொமானம்							
0.	ஒரு கோடாத கனவடிவத் தாயக்கட்டை ஒரு தடவை உருட்டப்படுகின்றது. கிடைக்கும் பொமானம்							
0.	ஒரு கோடாத கனவடிவத் தாயக்கட்டை ஒரு தடவை உருட்டப்படுகின்றது. கிடைக்கும் பொமானம்							
0.	ஒரு கோடாத கனவடிவத் தாயக்கட்டை ஒரு தடவை உருட்டப்படுகின்றது. கிடைக்கும் பொமானம்							
0.	ஒரு கோடாத கனவடிவத் தாயக்கட்டை ஒரு தடவை உருட்டப்படுகின்றது. கிடைக்கும் பொமானம்							
0.	ஒரு கோடாத கனவடிவத் தாயக்கட்டை ஒரு தடவை உருட்டப்படுகின்றது. கிடைக்கும் பொமானம்							
0.	ஒரு கோடாத கனவடிவத் தாயக்கட்டை ஒரு தடவை உருட்டப்படுகின்றது. கிடைக்கும் பொமானம்							
0.	ஒரு கோடாத கனவடிவத் தாயக்கட்டை ஒரு தடவை உருட்டப்படுகின்றது. கிடைக்கும் பொமானம்							
0.	ஒரு கோடாத கனவடிவத் தாயக்கட்டை ஒரு தடவை உருட்டப்படுகின்றது. கிடைக்கும் பொமானம்							
0.	ஒரு கோடாத கனவடிவத் தாயக்கட்டை ஒரு தடவை உருட்டப்படுகின்றது. கிடைக்கும் பொமானம்							

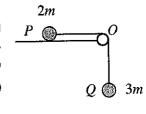
සියලු ම තිමිකම් ඇවිරිනි /(மුழුப் பதிப்புநிமையுடையது / $All\ Rights\ Reserved$]

இ ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්ත**ලින්තුව සිදුවල උදාද්ධ විභාග** දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව இலங்கைப் பரீட்சைத் திணைக்களம் இலங்கைப் பற்கதை இணைக்களும் இருவணைக்களும் இலங்கைப் பரீட்சைத் திணைக்களும் Department of Examinations, Sri Lanka Department of **இலங்கைக்** Shiji **யூதை த**ாட்**திணைக்களும்**க, Sri Lanka Department of Examinations, Sri Lanka இ ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව ලංකා පාල අදහර්තමේන්තුව ලංකා විභාග දෙපාර්තමේන්තුව இலங்கைப் பரீட்சைத் திணைக்களும் இலங்கைப**் நிறுவது நடித்த இலங்கை** பரீட்சைத் திணைக்களும்

සහතික පතු (උසස් පෙළ) විභාගය, 2021(2022) **මපාදු** கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2021(2022) General Certificate of Education (Adv. Level) Examination, 2021(2022)

උසස් ගණිතය II கணிதம் II உயர் Higher Mathematics П

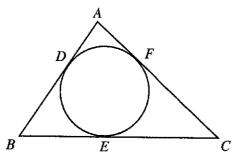
பகுதி В


* ஐந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக.

- 11. $A \equiv (1,0,0), B \equiv (0,1,0), C \equiv (0,0,1)$ ஆகியன மூன்று புள்ளிகளெனக் கொள்வோம். 2AB, 3AC, BCஆகிய விசைகள் முறையே AB,AC,BC ஆகியவற்றின் வழியே எழுத்துகளினால் காட்டப்படும் போக்கில் தாக்குகின்றன.
 - (i) தொகுதி புள்ளி A இனூடாகத் தாக்கும் ஒரு தனி விசை ${f R}$ இற்கும் ஓர் இணை ${f G}$ இந்கும் ஒடுங்குகின்றதெனக் காட்டுக; இங்கு ${f R},{f G}$ ஆகியன துணியப்பட வேண்டும்.
 - (ii) இப்போது ஒரு விசை ${f F}$ மேற்குறித்த தொகுதியினுள்ளே புகுத்தப்படுகின்றது.
 - (a) ${f F}$ ஆனது உந்பத்தியினூடாகத் தாக்குவதாகவும் தொகுதி ஓர் இணையாக ஒடுங்குவதாகவும் இருப்பின், 🏲 ஐயும் இணையின் பருமனையும் காண்க.
 - (b) தானக் காவி $\mathbf{i}+c\mathbf{j}+d\mathbf{k}$ உள்ள புள்ளியில் \mathbf{F} தாக்குவதாகவும் தொகுதி நாப்பத்திலும் இருப்பின், c,d ஆகியவற்றின் பெறுமானங்களைக் காண்க.
- 12. ஆரை a ஐ உடைய ஒரு வட்ட அடர் மாநா அடர்த்தி ho ஐ உடைய ஓர் ஏகவினத் திரவத்தில் அதன் மேற்பரப்பு நிலைக்குத்தாக இருக்க, அதன் மையம் O திரவத்தின் சுயாதீன மேற்பரப்புக்குக் கீழே ஆழம் a இல் இருக்கத்தக்கதாக, அமிழ்த்தப்பட்டுள்ளது. அடர் மீது உள்ள திரவ உதைப்பின் பருமன் $\pi a^3
 ho g$ எனவும் அடரின் அமுக்க மையம் நிலைக்குத்து விட்டத்தின் மீது மையம் O இற்குக் கீழே தூரம் $rac{a}{4}$ இல் இருக்கின்றது எனவும் காட்டுக.

ஆரை a ஐயும் உயரம் 2a ஐயும் உடைய ஒரு செவ்வட்டத் திண்மக் கூம்பு மாநா அடர்த்தி ho ஐ உடைய ஓர் ஏகவினத் திரவத்தில், அதன் அதியுயர் புள்ளி திரவத்தின் சுயாதீன மேற்பரப்பிலும் அதன் அச்சு கிடையாகவும் இருக்குமாறு, அமிழ்த்தப்பட்டுள்ளது. கூம்பின் வளைபரப்பு மீது உள்ள உதைப்பின் பருமன், திசை, தாக்கக் கோடு ஆகியவற்றைக் காண்க.

13. ஒரு கரடான கிடை மேசை மீது வைக்கட்டிருக்கும் 2m திணிவுள்ள ஒரு துணிக்கை P ஆனது மேசையின் விளிம்பில் நிலைப்படுத்தப்பட்டுள்ள ஒரு சிறிய ஒப்பமான கப்பி O இந்கு மேலாகச் செல்லும் ஓர் இலேசான நீட்டமுடியாத இழையினால் 3m திணிவுள்ள ஒரு துணிக்கை Q உடன் தொடுக்கப்பட்டுள்ளது. P,Q, இழை ஆகிய எல்லாம் ஒரு நிலைக்குத்துத் தளத்தில் இருக்கின்றன.


P இற்கும் மேசைக்குமிடையயே உள்ள உராய்வுக் குணகம் $rac{1}{2}$ எனக் கொள்வோம். உருவிற் காட்டப்பட்டுள்ளவாறு இழை இறுக்கமாக இருக்கத் தொகுதி ஓய்விலிருந்து விடுவிக்கப்படுகின்றது. துணிக்கைகள் இயங்கத் தொடங்குகின்றனவெனக் காட்டுக. துணிக்கை Q ஆனது அதன் கதி v ஆக இருக்கும்போது தடை விசை mkvஐப் பிரயோகிக்கும் ஒரு தடுக்கும் ஊடகத்தில் இயங்குகின்றது; இங்கு k(>0)ஒரு மாநிலியாகும். $5rac{\mathrm{d} v}{\mathrm{d} t} = 2g - kv$ எனக் காட்டுக.

P கதி $rac{g}{k}$ ஐ அடைவதற்கு எடுக்கும் நேரத்தையும் இந்நேரத்தின்போது P செல்லும் தூரத்தையும் காண்க. (இந்நேரத்தின்போது P ஆனது O ஐ அடையாமல் இருக்கும் அளவிற்கு இழை நீளமாக உள்ளதெனக் கொள்க.)

- 14. சம ஆரையுள்ள A,B என்னும் இரு ஒப்பமான கோளங்கள் ஓர் ஒப்பமான கிடை மேசை மீது உள்ளன. A இன் திணிவு m உம் B இன் திணிவு 2m உம் ஆகும். இக்கோளங்கள் ஒன்றெயொன்று நோக்கி எறியப்படுகின்றன. அவை மோதும்போது அவற்றின் மையங்களை இணைக்கும் கோடு \mathbf{j} இற்குச் சமாந்தரமாக இருக்கும் அதே வேளை A,B ஆகியவற்றின் வேகங்கள் முறையே $2\mathbf{i}+3\mathbf{j},-\mathbf{i}+\alpha\mathbf{j}$ ஆகும்; இங்கு $\alpha>0$ ஆகும். A இற்கும் B இற்குமிடையே உள்ள மீளமைவுக் குணகம் $\frac{1}{2}$ உம் மோதுகைக்குச் சற்றுப் பின்னர் கோளம் Q இன் வேகம் $-\mathbf{i}+3\mathbf{j}$ உம் ஆகும்.
 - (i) α இன் பெறுமானம்
 - (ii) மோதுகைக்குச் சற்றுப் பின்னர் கோளம் P இன் வேகம்
 - (iii) மோதுகை காரணமாக இயக்கப்பாட்டுச் சக்தியில் உள்ள இழப்பு
 - (iv) B இலிருந்து A மீது உள்ள கணத்தாக்குஆகியவற்றைக் காண்க.
- 15. ஒவ்வொன்றும் திணிவு m ஐயும் நீளம் 2a ஐயும் உடைய மூன்று சீரான கோல்களைக் கொண்ட ஒரு சட்டம் முக்கோணி ABC ஐ ஆக்குமாறு ஒருமிக்க விறைப்பாக மூட்டப்பட்டிருக்கும் அதே வேளை உருவிற் காட்டப்பட்டுள்ளவாறு திணிவு m ஐ உடைய ஒரு சீரான வட்ட வளையம் அம்முக்கோணியினுள்ளே அமைந்துள்ளது. வளையம் AB, BC, CA ஆகிய கோல்களில் முறையே D, E, F ஆகிய புள்ளிகளில் விறைப்பாக நிலைப்படுத்தப்பட்டுள்ளது; இங்கு D, E, F ஆகியன AB, BC, CA ஆகியவற்றின் நடுப் புள்ளிகளாகும்.

A இனூடாக சட்டத்தின் தளத்திற்குச் செங்குத்தாக உள்ள அச்சைப் பற்றி சட்டத்தின் சடத்துவத் திருப்பம் $rac{23}{3}$ ma^2 எனக் காட்டுக.

A இனூடாகச் சட்டத்தின் தளத்துக்குச் செங்குத்தான ஓர் ஒப்பமான நிலைத்த கிடை அச்சைப் பற்றிச் சட்டம் கழலலாம். சட்டத்தின் திணிவு மையம் A இற்குக் கீழே இருக்குமாறு நாப்பத் தானத்திலிருந்து சட்டத்திற்கு ஒரு சிறிய இடப்பெயர்ச்சி கொடுக்கப்பட்டு, சட்டம் ஓய்விலிருந்து விடுவிக்கப்படுகின்றது. சட்டத்தின் இயக்கம் அண்ணளவாக எளிய இசை இயக்கமாகும் எனவும் அதன் ஆவர்த்தன காலம் $2\pi\sqrt{\frac{23a}{8\sqrt{3}g}}$ எனவும் காட்டுக.

 ${f 16.}\,$ (a) பின்னக எழுமாற்று மாறி X இற்குக் கீழே தரப்பட்டுள்ள நிகழ்தகவுப் பரம்பல் உள்ளதெனக் கெள்வோம்.

X	0	1	2	3	4
P(X=x)	0.1	0.3	0.4	0.15	0.05

Y=2X+1 எனக் கொள்வோம். Y இன் நிகழ்தகவுப் பரம்பல் பின்வரும் அட்டவணையில் தரப்படுகின்றது.

					
Y	1	3	5	7	9
P(Y=y)	0.1	0.3	р	q	0.05

- $(i)\ p,q$ ஆகியவற்றின் பெறுமானங்களைக் காண்க.
- (ii) E(Y), Var(Y) ஆகியவற்றைக் காண்க.
- (iii) P(Y > 3) ஐக் கண்டு, **இதிலிருந்து,** P(X > 1) ஐக் காண்க.

PAPERMASTER.LK

- (b) (i) 3 கோடாத நாணயங்களை மேலே எநியும்போது பெறப்படும் வால்களின் எண்ணிக்கை X எனக் கொள்வோம். X இன் நிகழ்தகவுப் பரம்பலைக் கண்டு, **இதிலிருந்து,** E(X) ஐயும் Var(X) ஐயும் காண்க.
 - (ii) X இன் பெறுமானம் ஓர் ஒற்றை எண்ணெனின், முகத்தின் மீது 3 அல்லது 6 கிடைப்பதற்கான நிகழ்தகவு $\frac{2}{3}$ இற்குச் சமமான, ஒரு கோடிய கனவடிவத் தாயக்கட்டை உருட்டப்படுகின்றது. அவ்வாறு இல்லாவிட்டால், முகத்தின் மீது 3 அல்லது 6 கிடைப்பதற்கான நிகழ்தகவு $\frac{1}{3}$ இற்குச் சமமான, வேறொரு கோடிய கனவடிவத் தாயக் கட்டை உருட்டப்படுகின்றது.

மாறி Y பின்வருமாறு வரையறுக்கப்படும்:

Y இன் நிகழ்தகவுப் பரம்பலைக் கண்டு**, இதிலிருந்து,** $\mathit{E}(Y)$ ஐயும் $\mathrm{Var}(Y)$ ஐயும் காண்க.

17.(a) தொடர் எழுமாற்று மாறி X இன் நிகழ்தகவு அடர்த்திச் சார்பானது

$$f_X(x) = \begin{cases} 10x^2(1-x) & , & 0 < x < 1 \\ 0 & , & அவ்வாறு இராதபோது$$

இன் மூலம் தரப்படுகின்றது.

E(X) ஐயும் ${
m Var}(X)$ ஐயும் காண்க.

மேலும் $P\left(X < \frac{1}{2}\right)$ ஐக் காண்க.

தொடர் எழுமாற்று மாறி Yஆனது $Y=\frac{3X+2}{4}$ இனால் வரையறுக்கப்படுமெனின், E(Y) ஐயும் Var(Y) ஐயும் காண்க.

- (b) ஒரு நகர்ப் பிரதேசத்தில் தினசரிக் குடித்தனப் போக்குவரத்துச் செலவுகள் இடை ரூ. 2000 உடனும் நியம விலகல் ரூ. 400 உடனும் செவ்வனாகப் பரம்பியுள்ளன எனக் கொள்வோம்.
 - (i) ஓர் எழுமாற்றாகத் தெரிவு செய்த குடித்தனத்தின் தினசரிப் போக்குவரத்துச் செலவு ரூ. 2500 ஐ விஞ்சுவதற்கான நிகழ்தகவைக் காண்க.
 - (ii) குடித்தனங்களில் 10% இன் தினசரிப் போக்குவரத்துச் செலவு ரு. k ஐ விஞ்சுகின்றதெனத் தரப்பட்டுள்ளது. k இன் பெறுமானத்தைக் காண்க.