(10) සංයුක්ත ගණිතය

පුශ්න පතු වයූහය

(I පතුය -	කාලය : පැය 03යි. (ඊට අමතරව කියවීම් කාලය මිනිත්තු 10 යි.)						
	මෙම පුශ්න පතුය කොටස් <mark>දෙකකින්</mark> සමන්විත වේ.						
	A කොටස - පුශ්න දහයකි. පුශ්න සියල්ලට ම පිළිතුරු සැපයිය යුතු ය. එක් පුශ්නයකට ලකුණු 25 බැගින් ලකුණු 250කි.						
	•)ස - පුශ්න හතකි. පුශ්න පහකට පිළිතුරු සැපයිය යුතු ය. එක් පුශ්නයකට ලකුණු 150 බැගින් ලකුණු 750කි.					
	I පතුය සඳහා මුළු	ලකුණු 1000 ÷ 10 = 100					
II පතුය -	කාලය : පැය 03යි	. (ඊට අමතරව කියවීම් ක	ාලය	මිනිත්තු 10 යි.)			
	මෙම පුශ්න පතුය	කොටස් <mark>දෙකකින්</mark> සමන්	විත ෙ	ව්.			
	A කොටස - පුශ්න දහයකි. පුශ්න සියල්ලට ම පිළිතුරු සැපයිය යුතු ය. එක් පුශ්නයකට ලකුණු 25 බැගින් ලකුණු 250කි.						
	B කොටස - පුශ්න හතකි. පුශ්න පහකට පිළිතුරු සැපයිය යුතු ය. එක් පුශ්නයකට ලකුණු 150 බැගින් ලකුණු 750කි.						
	II පතුය සඳහා මුළු ලකුණු 1000 ÷ 10 = 100						
අවසාන ලකුණ	වසාන ලකුණ ගණනය කිරීම : I පතුය = 100						
		II පතුය	=	100			
		අවසාන ලකුණ	=	$200 \div 2 = \underline{100}$			

(10) සංයුක්ත ගණිතය

I පතුය

A කොටස

1.	ගණික අභාපුහන මූලධර්මය භාවිතයෙන් සියලු $n \in \mathbb{Z}^{+}$ සඳහා 6^{n} – 1 යන්න 5 න් බෙදෙන බව සාධනය කරත්න.
2.	2 x – 3 ≤ 2 + x අසමානතාව තෘප්ත කරන x හි සියලු තාත්ත්වික අගයන්හි කුලකය සොයන්න.
	ඒ නයින්, 2 <i>x</i> + 3 ≤ 2 − <i>x</i> විසඳන්න.
	PAPERMASTER.LK

3.	ආගන්ඩ් සටහනක $ z - i \le 1$ හා $\frac{\pi}{4} \le \operatorname{Arg}(z - i) \le \frac{3\pi}{4}$ යන අවශාතා තෘප්ත කරන z සංකීර්ණ සංඛාා						
	නිරූපණය කරන R පෙදෙස අඳුරු කරන්න.						
	R පෙදෙස තුළ වූ z සඳහා, $\operatorname{Re} z$ + $\operatorname{Im} z$ හි උපරිම අගය ලියා දක්වන්න.						
	$\left(\begin{pmatrix} \alpha & \frac{1}{3} \\ & \alpha \end{pmatrix} \right)$						
4.	$\lim_{x \to 0} \frac{\left((8+x)^{\frac{1}{3}} - 2 \right) \sin 2x}{x^2} = \frac{1}{6} \ \text{ab erabbasis}.$						
	λ						
	PAPERMASTER.LK						

4	$\frac{y}{3}\sin\theta = 1$	1 බව පෙප	ත්වන්න.						සමීක්
т	3 ඉලිප්සයට			මභය (0, –	$\frac{7}{6}$ ලක්ෂා	ය හරහා	යන පරි	^ρ θ (0 <	: θ <
අගය සොං					0				
			•••••						
$\tan^{-1}\left[\frac{5}{5}\right]$	$\tan\left(\frac{x}{2}\right) + \frac{1}{2}$	<u>4</u>] යන්න	x විෂලයසි	් අවකලනය	ා කරන්න ඒ	් නයින්.	dx	ලේසාය	ກໍກ.
12	(2)	3		ф е ла () сэт			$5 + 4 \sin^{-1}$		
[3							,	1 <i>x</i>	
[]								1 <i>x</i>	
[3								1 <i>x</i>	
								1 <i>x</i>	
								1 <i>x</i>	
								1 <i>x</i>	
								1 <i>x</i>	
								1 <i>x</i>	
								1 <i>x</i>	
								1 <i>x</i>	
								1 <i>x</i>	
								1 <i>x</i>	

 $y = \frac{x}{\sqrt{x^2 + 9}}$ වකුයෙන් ද x = 3 සරල රේඛාව හා x–අක්ෂය මගින් ද ආවෘත වූ පෙදෙස S යැයි ගනිමු (රූපය 7. බලන්න). x–අක්ෂය වටා රේඩියන 2π වලින් S භුමණය කිරීමෙන් ජනනය වන ඝන වස්තුවේ පරිමාව $3\pi\left(1-\frac{\pi}{4}\right)$ බව පෙන්වන්න. y 0 x _____ 8. (2, 1) ලක්ෂාය හරහා යන විචලා සරල රේඛාවක් x–අක්ෂය හා y–අක්ෂය පිළිවෙළින් P හා Q ලක්ෂා වලදී හමුවේ. PQ හි මධා ලක්ෂා R වේ. R ලක්ෂාය x + 2y = 2xy වකුය මත පිහිටන බව පෙන්වන්න. PAPERMASTER.

9. (0, 0) හා (0, 2) ලක්ෂා හරහා යන $x^2 + y^2 - 2x + 4y - 6 = 0$ වෘත්තයෙහි පරිධිය සමච්ඡේදනය කරන වෘත්තයේ සමීකරණය සොයන්න.

	π
10.	$\sqrt{3}\cos x - \sin x$ යන්න $R\cos{(x+lpha)}$ ආකාරයෙන් පුකාශ කරන්න; මෙහි $R>0$ හා $0 වේ$
	ඒ නයින්, $\sqrt{3}\cos 2x - \sin 2x + 1 = 0$ සමීකරණය විසඳන්න.
	ඒ නයින්, $\sqrt{3}\cos 2x - \sin 2x + 1 = 0$ සමීකරණය විසඳන්න.
	ඒ නයින්, $\sqrt{3}\cos 2x - \sin 2x + 1 = 0$ සමීකරණය විසඳන්න.
	ඒ නයින්, $\sqrt{3}\cos 2x - \sin 2x + 1 = 0$ සමීකරණය විසඳන්න.
	ඒ නයින්, $\sqrt{3}\cos 2x - \sin 2x + 1 = 0$ සමීකරණය විසඳන්න.
	ජ නයින්, $\sqrt{3}\cos 2x - \sin 2x + 1 = 0$ සමීකරණය විසඳන්න.
	ඒ නයින්, $\sqrt{3}\cos 2x - \sin 2x + 1 = 0$ සමීකරණය විසඳන්න.
	ඒ නයින්, √3 cos 2 <i>x</i> − sin 2 <i>x</i> + 1 = 0 සමීකරණය විසඳන්න.
	ජ නයින්, √3 cos 2x − sin 2x + 1 = 0 සමීකරණය විසඳන්න.
	ඒ නයින්, √3 cos 2x − sin 2x + 1 = 0 සමීකරණය විසඳන්න.
	ඒ නයින් , √3 cos 2x − sin 2x + 1 = 0 සමීකරණය විසඳන්න.
	5 නයින්, √3 cos 2 <i>x</i> − sin 2 <i>x</i> + 1 = 0 සම්කරණය විසඳන්න.
	9 නයින්, √3 cos 2x − sin 2x + 1 = 0 සම්කරණය විසඳන්න.

B කොටස

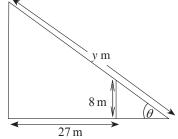
- **11.** (a) a හා b යනු පුහින්න තාත්ත්වික සංඛාා දෙකක් යැයි ගනිමු. $x^2 + 2bx + 2ab = a^2$ සමීකරණයෙහි මූල තාත්ත්වික හා පුහින්න බව පෙන්වන්න. $a \neq 2b$ හා $a \neq 0$ ම නම් පමණක් ඉහත සමීකරණයේ මූල වන α හා β දෙකම නිශ්ශුනා වන බව පෙන්වන්න. දැන් $a \neq 2b$ හා $a \neq 0$ යැයි සිතමු. $\frac{\alpha}{\beta}$ හා $\frac{\beta}{\alpha}$ ස්වකීය මූල ලෙස වූ වර්ගජ සමීකරණය සොයන්න.
 - $(b) \ f(x)$ යනු මාතුය $2 \supset 2$ වැඩි බහුපදයක් යැයි ද p හා q යනු පුහින්න තාත්ත්වික සංඛාහ යැයි ද ගනිමු. ශේෂ පුමේයය දෙවරක් යෙදීමෙන් f(x) යන්න (x-p)(x-q) වලින් බෙදූ විට ශේෂය $\frac{f(q)-f(p)}{q-p}\,(x-p)+f(p)$ බව පෙන්වන්න.

 $g(x) = x^3 + ax^2 + bx + 1$ යැයි ගනිමු; මෙහි $a, b \in \mathbb{R}$ වේ. (x - 2) න් g(x) බෙදූ විට ශේෂය, (x - 1) න් එය බෙදූ විට ලැබෙන ශේෂය මෙන් තෙගුණයක් බව (x - 1)(x - 2) න් g(x) බෙදූ විට ශේෂය kx + 5 වන බව ද දී ඇත; මෙහි $k \in \mathbb{R}$ වේ. a, b හා k හි අගයන් සොයන්න.

12. (a)
$$(1+x)^2 \left(2x^2 - \frac{1}{2x}\right)^{10}$$
හි පුසාරණයේ x වලින් ස්වායත්ත පදය –15 බව පෙන්වන්න.

- (b) වෙනස් පරිසාධන වාර්තා සහිත කෙටිදුර ධාවකයන් 8 දෙනකු අතුරින් ධාවකයින් 4 දෙනකුගෙන් සමන්විත සහාය දිවීමේ කණ්ඩායමක් තෝරා ගත යුතුව ඇත. ඔවුන් අතුරින් අඩුතම දක්ෂතා පෙන්වා ඇති කීඩකයා තෝරා ගතහොත් වැඩිතම දක්ෂතා පෙන්වා ඇති කීඩකයා ද තෝරා ගනු ලැබේ. එසේ නමුත් අඩුතම දක්ෂතා පෙන්වා ඇති කීඩකයා තෝරා නොගෙන වැඩිතම දක්ෂතා පෙන්වා ඇති කීඩකයා තෝරා ගත හැකිය. මෙලෙස සාදා ගත හැකි වෙනස් සහාය දිවීමේ කණ්ඩායම් ගණන සොයන්න.
- (c) $r \in \mathbb{Z}^+$ සඳහා $u_r = \frac{2r^2 5}{(r+1)^2 (r+2)^2}$ හා $f(r) = \frac{\lambda r + \mu}{(r+1)^2}$ යැයි ගනිමු; මෙහි λ සහ μ යනු තාත්ත්වික නියත වේ. $r \in \mathbb{Z}^+$ සඳහා $u_r = f(r) - f(r+1)$ වන පරිදි λ හා μ හි අගයන් සොයන්න. $n \in \mathbb{Z}^+$ සඳහා $S_n = \sum_{n=1}^{n} u_r$ යැයි ගනිමු. $n \in \mathbb{Z}^+$ සඳහා $S_n = \frac{1}{4} - \frac{2n+1}{(n+2)^2}$ බව පෙන්වන්න.

$$\sum_{r=1}^{\infty} u_r$$
 අපරිමිත ශෝණීය අභිසාරි බව **අපෝහනය** කර එහි ඓකාභය සොයන්න.


- **13.** (a) $a, b, c \in \mathbb{R}$ යැයි ගනිමු. තවද $A = \begin{pmatrix} 1 & 2 & 1 \\ a & 3 & -1 \end{pmatrix}$, $B = \begin{pmatrix} 2 & b & 1 \\ b & 1 & c \end{pmatrix}$ හා $C = \begin{pmatrix} c & 2a + c \\ 1 & b \end{pmatrix}$ යැයි ද ගනිමු. $AB^{T} = C$ වන පරිදි a, b හා c හි අගයන් සොයන්න. a, b හා c හි මෙම අගයන් සඳහා $(C^{T})^{-1}$ සොයා, **ඒ නයින්**, $C^{-1} P C^{T} = 5C$ වන පරිදි වූ P නාහාසය සොයන්න.
 - (b) ධන නිඛිලමය දර්ශකයක් සඳහා වූ ද මුවාවර් පුමේයය භාවිත කරමින්, $z = \cos \theta + i \sin \theta$ නම් $z^{-n} = \cos n \theta - i \sin n \theta$ බව පෙන්වන්න; මෙහි $\theta \in \mathbb{R}$ හා $n \in \mathbb{Z}^+$ වේ. $-1 + i\sqrt{3}$ හා $\sqrt{3} + i$ යන එක් එක් සංකීර්ණ සංඛාහ $r(\cos \theta + i \sin \theta)$ ආකාරයෙන් පුකාශ කරන්න; මෙහි r > 0 හා $-\pi < \theta \le \pi$ වේ.

$$m, n \in \mathbb{Z}^+$$
යැයි ගනිමු. $\frac{(-1+i\sqrt{3})^n}{(\sqrt{3}+i)^m} = 8$ නම් $n = m+3$ හා $n = 4k-1$ බව පෙන්වන්න; මෙහි $k \in \mathbb{Z}$ වේ.

14. (a) $x \neq -2$ සඳහා $f(x) = \frac{(x+1)}{(x+2)^2}$ යැයි ගනිමු. f(x) හි වහුත්පත්නය වූ f'(x) යන්න $x \neq -2$ සඳහා $f'(x) = \frac{-x}{(x+2)^3}$ මගින් දෙනු ලබන බව පෙන්වන්න. $x \neq -2$ සඳහා $f''(x) = \frac{2(x-1)}{(x+2)^4}$ බව දී ඇත; මෙහි f''(x) මගින් f(x) හි දෙවෙනි වහුත්පන්නය දක්වයි. ස්පර්ශෝන්මුඛ, හැරුම් ලක්ෂාය හා නතිවර්තන ලක්ෂාය දක්වමින් y = f(x) හි පුස්තාරයේ දළ සටහනක් අදින්න.

(b) ගොඩනැගිල්ලක සිරස් බිත්තියක සිට 27 m දුරකින්, 8 m ක් උස වැටක් ඇත. රූපයේ දක්වා ඇති පරිදි, ඉණිමගක් එහි පහළ කෙළවර තිරස් පොළොව මත ඇතිව වැටට යන්තම් ඉහළින් ගොස් බිත්තිය කරා ළඟා වේ. ඉණිමගෙහි දිග y m යැයි ද ඉණිමග තිරස සමඟ සාදන කෝණය θ යැයි ද ගනිමු. y යන්න θ හි ශිතයක් ලෙස පුකාශ කරන්න.

$$\frac{\mathrm{d}y}{\mathrm{d}\theta} = 0$$
 වන්නේ $\theta = \tan^{-1}\left(\frac{2}{3}\right)$ ම නම් පමණක් බව පෙන්වන්න.
සුදුසු පුාන්තරතුළ $\frac{\mathrm{d}y}{\mathrm{d}\theta}$ හි ලකුණ සැලකීමෙන්, කෙටිතම එවන්
ඉණිමගෙහි දිග සොයන්න.

15. (a) භින්න භාග ඇසුරෙන්
$$\frac{4}{(x-1)(x+1)^2}$$
 යන්න පුකාශ කරන්න.

ඒ නයින්, $\int \frac{1}{(1 - e^{-x})(1 + e^{x})^2} dx$ සොයන්න.

(b) කොටස් වශයෙන් අනුකලනය භාවිතයෙන්
$$\int x^2 (\sin x + 2\cos x) \, \mathrm{d}x$$
 සොයන්න.

(c)
$$\int_{0}^{\pi} x f(\sin x) dx = \frac{\pi}{2} \int_{0}^{\pi} f(\sin x) dx$$
 සූතුය පිහිටුවන්න.
ඒ නයින්, $\int_{0}^{\pi} \frac{x \sin x}{(2 - \sin^{2} x)} dx = \frac{\pi^{2}}{4}$ බව පෙන්වන්න.

16. A = (-1, 1) යැයි ද l යනු x + y = 7 මගින් දෙනු ලබන සරල රේඛාව යැයි ද ගනිමු.
A ABC = ACB = tan⁻¹(7) වන පරිදි l මත වූ B හා C ලක්ෂාවල ඛණ්ඩාංක සොයන්න.
ABC කෝණයෙහි සමච්ඡේදකය වන m හි සමීකරණය සොයන්න.
BC විෂ්කම්භයක් ලෙස වූ වෘත්තයෙහි සම්කරණය ලියා දක්වා ඒ නයින් B හා C හරහා යන ඕනෑම
වෘත්තයක සමීකරණය පරාමිතියක් ඇසුරෙන් ලියා දක්වන්න.

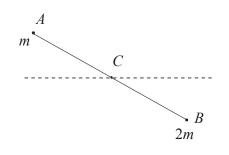
A, B හා C ලක්ෂාය හරහා යන S වෘත්තයෙහි සමීකරණය අපෝහනය කරන්න.

S වෘත්තයේ හා m සරල රේඛාවේ ඡේදන ලක්ෂාවල ඛණ්ඩාංක ද සොයන්න.

PAPERMASTER.LK

- 17. (a) $\cos^3 x \cos 3x + \sin^3 x \sin 3x = \cos^3 2x$ බව පෙන්වන්න. ඒ නයින්, 8 ($\cos^3 x \cos 3x + \sin^3 x \sin 3x$) = 1 විසඳන්න.
 - (b) ABC යනු තිකෝණයක් යැයි ගනිමු. BC මත D හා E ලක්ෂා ගෙන ඇත්තේ BD : DE : EC = 1 : 2 : 3 වන පරිදි ය. තවද $\stackrel{\wedge}{BAD} = \alpha$, $\stackrel{\wedge}{DAE} = \beta$ හා $\stackrel{\wedge}{EAC} = \gamma$ යැයි ගනිමු. සුදුසු තිකෝණ සඳහා සයින් නීතිය භාවිතයෙන් $\sin(\alpha + \beta) \sin(\beta + \gamma) = 5 \sin \alpha \sin \gamma$ බව පෙන්වන්න.
 - (c) $|x| \le 1$, $|y| \le 1$ හා $|z| \le 1$ යැයි ගනිමු. $\sin^{-1} x + \sin^{-1} y + \sin^{-1} z = \pi$ නම්, $x \sqrt{1-x^2} + y \sqrt{1-y^2} + z \sqrt{1-z^2} = 2xyz$ බව පෙන්වන්න.

* * *


(10) සංයුක්ත ගණිතය

II පතුය

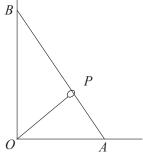
A කොටස

1.	ස්කන්ධ m හා λm වූ අංශු දෙකක් සුමට තිරස් මේසයක් මත පිළිවෙළින් u හා $rac{2u}{3}$ වේගවලින් එකිනෙක
	දෙසට චලනය වේ. ඒවායේ සරල ගැටුමෙන් අනතුරුව අංශු සමාන $rac{u}{2}$ වේගවලින් එකිනෙකින් ඉවතට
	චලනය වන බව දී ඇත. පුතාාගති සංගුණකය $rac{3}{5}$ බවත් λ හි අගය $rac{9}{7}$ බවත් පෙන්වන්න.
2.	රළු තිරස් මේසයක් මත තබා ඇති ස්කන්ධය <i>m</i> වූ අංශුවක්, මේසයේ දාරයට m
	ලම්බව දාරයේ සවිකර ඇති කුඩා සුමට කප්පියක් උඩින් යන සැහැල්ලු
	අවිතනා තන්තුවකින් නිදහසේ එල්ලෙන ස්කන්ධය 2m වූ අංශුවකට සම්බන්ධ
	කරනු ලැබේ. තත්තුව ඇදී තිබිය දී පද්ධතිය නිශ්චලතාවයේ සිට මුදාහරිනු $2m \bullet$ ලැබේ. ස්කන්ධය m වූ අංශුව හා මේසය අතර ඝර්ෂණ සංගුණකය $\frac{1}{4}$ වේ.
	තත්තුවේ ආතතිය $\frac{5}{6}mg$ බව පෙත්වත්ත.
	PAPERMASTER.LK

3. දිග 2a වූ සැහැල්ලු AB දණ්ඩක A හා B දෙකෙළෙවරට පිළිවෙළින් ස්කන්ධ m හා 2m වූ අංශු දෙකක් සම්බන්ධ කර ඇත. දණ්ඩේ C මධා ලක්ෂාය අචල ලක්ෂායකට සුමට ලෙස අසව් කර ති්රස් පිහිටීමක අල්වා තබා නිශ්චලතාවේ සිට මුදාහරිනු ලැබේ. (රූපය බලන්න.) ශක්ති සංස්ථිති මූලධර්මය යෙදීමෙන් දණ්ඩ තිරස සමඟ θ කෝණයක් සාදන විට එක් එක් අංශුවේ v වේගය $v^2 = \frac{2ga}{3}\sin\theta$ බව පෙන්වන්න.

4. A හා B මෝටර් රථ දෙකක්, සෘජු මාර්ගයක සමාන්තර මංතීරු දෙකක එකම දිශාවට චලනය වේ. t=0 කාලයේ දී A හා B පිළිවෙළින් u හා $\frac{u}{4}$ වේගවලින් පාලමක් පසු කර යයි. A මෝටර් රථය එම නියත u වේගයෙන්ම චලනය වන අතර B මෝටර් රථය t=T කාලයේ දී වේගය $\frac{5u}{4}$ වන තුරු නියත ත්වරණයෙන් චලනය වී පසුව එම වේගය පවත්වා ගෙන යයි. A මෝටර් රථයේ හා B මෝටර් රථයේ චලිතය සඳහා පුවේග - කාල පුස්තාරවල දළ සටහන් එකම රූපයක අදින්න. **ඒ නයින්** B මගින් A පසුකර යෑමට ගතවන කාලය නීර්ණය කිරීමට සමීකරණක් ලබා ගන්න.

PAPERMASTER:LK


5. ස්කන්ධය මෙටික් ටොන් 300ක් වූ දුම්රියක්, සෘජු සමතලා දුම්රිය මාර්ගයක් දිගේ 15 m s⁻¹ නියත වේගයෙන් චලනය වන අතර චලිතයට ප්රිරෝධය මෙටික් ටොන් එකකට 50 N වේ. දුම්රියේ ජවය, කිලෝ වොට්වලින් සොයන්න. ස්කන්ධය මෙටික් ටොන් 50ක් වූ පිටුපස මැදිරිය ගිලිහී යන අතර එන්ජිමේ ප්කර්ෂණ බලය නොවෙනස්ව පවතී. දුම්රියේ ඉතිරි කොටසෙහි ත්වරණය සොයන්න.

6. සුපුරුදු අංකනයෙන්, O අචල මූලයක් අනුබද්ධයෙන් A, B හා C ලක්ෂා තුනක පිහිටුම් දෛශික පිළිවෙළින් $4\mathbf{i} + \mathbf{j}, \ \lambda \mathbf{i} + \mu \mathbf{j}$ හා $\mathbf{i} + 5\mathbf{j}$ වේ. මෙහි λ හා μ ධන නියත වේ. OABC චතුරසුයේ විකර්ණ දිගින් සමාන හා එකිනෙකට ලම්බ වේ. \mathbf{i} හා \mathbf{j} ඇසුරෙන් \overrightarrow{AC} ලියා දක්වන්න. අදිශ ගුණිතය භාවිතයෙන් $\lambda = 4$ හා $\mu = 3$ බව පෙන්වන්න.

PAPERMASTER.LK

7. කුඩා සැහැල්ලු සුමට P මුදුවක් තුළින් යන දිග 2a හා බර W වූ සුමට ඒකාකාර AB දණ්ඩක් එහි A කෙළෙවර සුමට තිරස් ගෙබිමක් මත ද අනෙක් B කෙළෙවර සුමට සිරස් බිත්තියක් ස්පර්ශ වෙමින් ද තිබේ. තිරසට 60° ක කෝණයක් සාදමින් බිත්තියට ලම්බ සිරස් තලයක දණ්ඩ සමතුලිතතාවේ තබනු ලැබ ඇත්තේ මුදුව රූපයෙහි පෙන්වා ඇති පරිදි වූ O ලක්ෂායට යා කරන සැහැල්ලු අවිතනා තත්තුවක් මගිනි. $O\hat{P}A = 90^\circ$ බව පෙන්වා තත්තුවේ ආතතිය නිර්ණය කිරීමට පුමාණවත් සමීකරණ ලියා දක්වන්න.

ස්කන්ධය m වූ අංශුවක් තිරසට $lpha$ කෝණයකින් ආනත රළු තලයක් මත තබා ඇත. මෙහි μ (< tan $lpha$)
යනු අංශුව හා තලය අතර ඝර්ෂණ සංගුණකය වේ. අංශුව සමතුලිතතාවේ රඳවා ඇත්තේ තලයේ උපරිම
බැවුම් රේඛාව දිගේ උඩු අතට අංශුවට යෙදූ P බලයක් මගිනි.

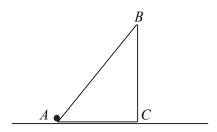
 $mg(\sin \alpha - \mu \cos \alpha) \le P \le mg(\sin \alpha + \mu \cos \alpha)$ බව පෙන්වන්න.

8.

PAPERMASTER.LK

9. ස්වකීය මුහුණත් හය මත 1, 2, 3, 4, 5 හා 6 ලෙස තිත් ලකුණු කොට ඇති නොනැඹුරු සම්මත දාදු කැටයක් වැඩි තරමින් විසිකිරීම් තුනකදී ලබාගත් මුලු තිත් ගණන හරියටම හයක් වීමේ සම්භාවිතාව සොයන්න.

a, b, 4, 5, 7, 4 හා 5 යන සංඛාහ හතෙහි මධානය හා මාතය සමාන වේ. මෙහි a හා b යනු ධන නිඛිල වේ. a හා b හි අගයන් සොයා සංඛාහ හතෙහි විචලතාව $\displaystyle rac{6}{7}$ බව පෙන්වන්න.


10.

B කොටස

- 11. (a) තිරස් පොළොව මත වූ O ලක්ෂායක සිට, තිරසට $\theta\left(0 < \theta < \frac{\pi}{2}\right)$ කෝණයකින් $u = \sqrt{2ga}$ පුවේගයක් සහිතව පුක්ෂේප කරන ලද අංශුවක්, ගුරුත්වය යටතේ චලනය වී P ලක්ෂායක ඇති ඉලක්කයක වදී. P හි O සිට මනිනු ලබන තිරස් හා සිරස් දුරවල් පිළිවෙළින් a හා ka වේ; මෙහි k යනු නියතයකි. $\tan^2 \theta - 4\tan \theta + 4k + 1 =$ බව පෙන්වා $k \leq \frac{3}{4}$ බව අපෝහනය කරන්න. දැන් $k = \frac{11}{16}$ යැයි ගනිමු. පුක්ෂේපණය විය හැකි දිශා දෙක අතර කෝණය $\tan^{-1}\left(\frac{4}{19}\right)$ බව පෙන්වන්න.
 - (b) A ගුවන් තොටුපොළක්, B ගුවත් තොටුපොළක සිට දකුණින් නැගෙනහිරට heta කෝණයකින් d දුරක පිහිටයි. එක්තරා දිනකදී, උතුරේ සිට v (< u) පුවේගයෙන් හමන සුළඟකට සාපේක්ෂව u වේගයෙන් ගුවන් යානයක් කෙළින්ම A සිට B දක්වා පියාසර කරයි. මෙම ගුවන් ගමන සඳහා පුවේග තිකෝණයේ දළ සටහනක් ඇඳ A සිට B දක්වා පියාසර කිරීමට ගතවන කාලය $\dfrac{d}{\sqrt{u^2 - v^2 \sin^2 \theta} - v \cos \theta}$ බව පෙන්වන්න.

දින කිහිපයකට පසුව, දකුණේ සිට $\frac{v}{2}$ පුවේගයකින් හමන සුළඟට සාපේක්ෂව $\frac{u}{2}$ වේගයෙන් ගුවන් යානය ආපසු කෙළින්ම B සිට A දක්වා පියාසර කරයි. ආපසු චලිතය සඳහා පුවේග නිකෝණයේ දළ සටහනක් ඇඳ B සිට A දක්වා පියාසර කිරීමට ගතවන කාලය A සිට B දක්වා ගතවන කාලය මෙන් දෙගුණයක් බව පෙන්වන්න.

12. (a) දී ඇති රූපයෙහි ABC තිුකෝණය මගින්, ස්කන්ධය 3m වූ සුමට ඒකාකාර කුඤ්ඤයක ගුරුත්ව කේන්දුය ඔස්සේ යන සිරස් හරස්කඩක් නිරූපණය කරයි. AB රේඛාව, එය අඩංගු මුහුණතෙහි උපරිම බෑවුම රේඛාවක් වේ. තවද $B\hat{A}C = \frac{\pi}{3}$ වේ. AC අයත් මුහුණත සුමට තිරස් බිමක් මත ඇතිව කුඤ්ඤය තබනු ලබයි. ස්කන්ධය m වන අංශුවක් Aලක්ෂායෙහි තබා, \overrightarrow{AB} දිගේ u පුවේගයක් ලබා දෙනු ලැබේ. AB

සුමට බව හා අංශුව කූඤ්ඤය හැර නොයත බව උපකල්පනය කරමින්, කූඤ්ඤයට සාපේක්ෂව නිශ්චලතාවට පැමිණීමට අංශුව ගනු ලබන කාලය සොයන්න.

දැන් මෙම පිහිටුමේදී අංශුව කුඤ්ඤයට ඇලේ යැයි සිතන්න. ඇලුන අංශුව සහිත කුඤ්ඤය අතිරේක dදුරක් චලනය වීම සඳහා ගන්නා කාලය සොයන්න.

(b) ස්කන්ධය m වූ P පබළුවක්, සිරස් තලයක සවිකර ඇති අරය a හා කේන්දය O වූ වෘත්තාකාර සුමට කම්බියක් දිගේ චලනය වීමට නිදහස් ය. කම්බියේ ඉහළම A ලක්ෂායෙහි දී පබළුව අල්වා තබා, යන්තමින් විස්ථාපිත පිහිටුමකින් නිශ්චලතාවේ සිට මුදා හරිනු ලැබේ.

OP යන්න heta කෝණයකින් හැරී ඇති විට, පබළුවේ වේගය වන v යන්න, $v^2=2ga(1-\cos heta)$ මගින් දෙනු ලබන බව පෙන්වන්න.

පහළම ලක්ෂාය වන B වෙත ළඟා වීමේදී පබළුවේ වේගය සොයන්න.

B ලක්ෂාය වෙත P ළඟා වන විට, එය B හි නිශ්චලතාවේ තිබූ ස්කන්ධය m වූ වෙනත් පබළුවක් සමඟ ගැටී හාවී Q සංයුක්ත පබළුවක් සාදයි. OQ යන්න $\frac{\pi}{3}$ කෝණයකින් හැරී ඇති විට Q ක්ෂණික නිශ්චලතාවයට පැමිණෙන බව පෙන්වන්න.

PAPERMASTER.LK

13. ස්වාභාවික දිග a හා මාපාංකය mg වූ සැහැල්ලු පුතාහාස්ථ තන්තුවක් අවල O ලක්ෂායකට සම්බන්ධ කර ඇත. එක එකක ස්කන්ධය m වූ අංශු දෙකක් තන්තුවේ අනික් කෙළවර වූ P ට ඈඳනු ලැබ පද්ධතිය සමතුලිතව එල්ලෙයි. මෙම පිහිටීමෙහි දී තන්තුවේ විතතිය 2a බව පෙන්වන්න. දැන් අංශුවලින් එක් අංශුවක් ගිලිහී යන අතර ස්කන්ධය m වූ ඉතිරි අංශුව, තන්තුවේ කෙළවරට සම්බන්ධව තිබියදී, චලනය වීමට පටන් ගනී. P හි චලිතය සඳහා $\ddot{x} + \frac{g}{a}(x-2a) = 0$ සමීකරණය ලබා ගන්න. මෙහි $x(\geq a)$ යනු තන්තුවේ දිග වේ.

මෙම සරල අනුවර්තී චලිතයෙහි කේන්දුය C හා විස්තාරය සොයන්න.

C ලක්ෂායේදී අංශුව සිරස් ආවේගයක් දෙනු ලබන්නේ එහි පුවේගය තෙගුණ වන පරිදි ය. තන්තුව ඇඳී පවතින තුරු චලිතයේ කේන්දුය එලෙසම පවතින බවත්, මෙම චලිතයේ විස්තාරය 3a බවත් පෙන්වන්න.

ඒ නයින් $\sqrt{\frac{a}{g}} \left(\frac{\pi}{2} + \sin^{-1} \left(\frac{1}{3} \right) \right)$ මුළු කාලයකට පසුව තන්තුව බුරුල් වන බව පෙන්වන්න.

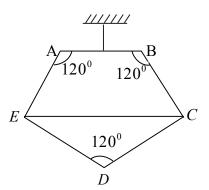
තන්තුව බුරුල්වන මොහොතේ දී අංශුවේ වේගය සොයන්න.

14. (a) PQRS යනු සමාන්තරාසුයක් යැයි ද T යනු QT: TR = 2:1 වන පරිදි QR මත පිහිටි ලක්ෂායක් යැයි ද ගනිමු. තවද $\overrightarrow{PQ} = \mathbf{a}$ හා $\overrightarrow{PS} = \mathbf{b}$ යැයි ගනිමු. \overrightarrow{PR} හා \overrightarrow{ST} දෛශික \mathbf{a} හා \mathbf{b} ඇසුරෙන් පුකාශ කරන්න.

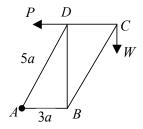
PR හා ST හි ඡේදන ලක්ෂාය U යැයි ගනිමු. $\overrightarrow{PU} = \lambda \overrightarrow{PR}$ හා $\overrightarrow{SU} = \mu \overrightarrow{ST}$ යැයි සිතමු; මෙහි λ හා μ අදිශ නියත වේ. PSU ත්ුකෝණය සැලකීමෙන් $(\lambda - \mu) \mathbf{a} + \left(\lambda + \frac{\mu}{3} - 1\right) \mathbf{b} = \mathbf{0}$ බව පෙන්වා λ හා μ හි අගයන් සොයන්න.

(b) බල තුනකින් සමන්විත පද්ධතියක් Oxy-තලයෙහි පහත දැක්වෙන ලක්ෂාවලදී කිුයා කරයි.

ලක්ෂාය	පිහිටුම් දෛශික	බලය
A	$2a\mathbf{i} + 5a\mathbf{j}$	Fi + 3Fj
В	$4a\mathbf{j}$	<i>−2F</i> i <i>− F</i> j
С	$-a\mathbf{i} + a\mathbf{j}$	Fi – 2Fj

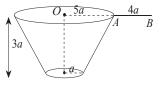

මෙහි \mathbf{i} හා \mathbf{j} මගින් පිළිවෙළින් Ox හා Oy ඛණ්ඩාංක අක්ෂවල ධන දිශාවලට ඒකක දෛශික වන අතර F, a යනු පිළිවෙළින් නිව්ටන් හා මීටරවලින් මනිනු ලැබූ ධන රාශි වේ. මෙම බල තනි රූප සටහනක සලකුණු කර, ඒවායේ දෛශික ඓකාසය ශනා වන බව පෙන්වන්න. $x\mathbf{i} + y\mathbf{j}$ පිහිටුම දෛශිකය සහිත P ලක්ෂායක් වටා පද්ධතියේ වාමාවර්ත සූර්ණය G සොයා, එය x හා y වලින් ස්වායත්ත වන බව පෙන්වන්න.

ඒ නයින් පද්ධතිය යුග්මයකට තුලාෳ බව පෙන්වා මෙම යුග්මයේ ඝූර්ණය සොයන්න.


දැන් $X\mathbf{i} + Y\mathbf{j}$ අතිරේක බලයක්, $\mathbf{d} = -\frac{5a}{2}\mathbf{i}$, පිහිටුම් දෛශිකය සහිත D ලක්ෂායෙහි දී යොදා ගනු ලබන්නේ A, B, C හා D ලක්ෂාවලදී කියාකරන බල හතරේ සම්යුක්තය O මූලය හරහා යන පරිදි ය. X හා Yහි අගයන් සොයන්න.

PAPERMASTER.LK

15. (a) AE = BC = 2a හා ED = CD = 2b වන ඒකක දිශක බර wවූ ඒකාකාර දඩුවලින් නිදහස් ලෙස සන්ධි කළ ABCDEපංචාසුයක ආකාරයේ රාමුවක් රූපයේ දැක්වේ. A, B හා Dශීර්ෂවල කෝණ එක එකක් 120° වේ. AB හි මධාා ලක්ෂායෙන් රාමුව සමතුලිතව එල්වා සමමිතික හැඩය පවත්වා ගනු ලබන්නේ C හා E සන්ධි යා කරන දිග $2b\sqrt{3}$ වන සැහැල්ලු දණ්ඩක් මගිනි. D සන්ධියේ පුතිකියාවෙහි විශාලත්වය $b\sqrt{3}w$ බව පෙන්වා CE සැහැල්ලු දණ්ඩේ තෙරපුම සොයන්න.


(b) AB, BC, CD, DA හා DB සැහැල්ලු දඩු ඒවායේ කෙළෙවරවලින් නිදහසේ සන්ධි කරන ලද චලනය කළ හැකි A සන්ධිය වටා සිරස් තලයක රාමු සැකිල්ලක් රූපයේ දැක්වේ. මෙහි AB = CD = 3a, BC = DA = 5a හා DB = 4a. C සන්ධියේ W බරක් එල්වා එය AB හා DC තිරස්ව ද BDසිරස් ව ද සමතුලිතව තබා ගනු ලබන්නේ D සන්ධිය හිදී CD දිගේ Pතිරස් බලයක් මගිනි. W ඇසුරින් P සොයන්න.

බෝ අංකනය යොදමින් පුතාහබල රූප සටහනක දළ සටහනක් ඇඳ ඒ නයින් සෑම දණ්ඩකම පුතාහබල සොයන්න. මේවා ආතති ද තෙරපුම ද යන්න සඳහන් කරන්න.

16. අනුකලනය මගින්, එකිනෙකට h දුරකින් වූ අරය r හා $\lambda r(\lambda > 1)$ වූ වෘත්තාකාර ගැටි දෙකකින් යුත් ඒකාකාර වූ කුහර සෘජු වෘත්තාකාර කේතුවක ජින්නකයක ගුරුත්ව කේන්දුය, කුඩා ගැටියේ කේන්දුයේ සිට $\frac{h}{3} \left(\frac{2\lambda + 1}{\lambda + 1} \right)$ දුරකින් ඇති බව පෙන්වන්න.

අරය a හා පෘෂ්ඨික ඝනත්වය σ වූ තුනී ඒකාකාර වෘත්තාකාර තැටියක ගැටිය, අරයයන් a හා 5a වූ වෘත්තාකාර ගැටි සහිත එම σ පෘෂ්ඨික ඝනත්වයම ඇති හිස් සෘජු වෘත්තාකාර කේතුවක උස 3a වූ ජින්නකයක කුඩා ගැටියට පෑස්සීමෙන් ද, දිග 4a හා රේඛීය ඝනත්වය ρ වූ තුනී ඒකාකාර AB දණ්ඩක් ජින්නකයේ ලොකු ගැටියට O, A හා B ලක්ෂා ඒක

රේබීය වන පරිදි රූපයේ දැක්වෙන ඇසුරින් පෑස්සීමෙන් ද සාස්පානක් සාදා ඇත. සාස්පානෙහි ගුරුත්ව කේන්දුයේ පිහිටීම සොයන්න.

 $\frac{\rho}{\sigma} < \frac{31}{24} \pi a$ නම්, තිරස් මේසයක් මත ස්වකීය පතුල ස්පර්ශ වන පරිදි තැබූ විට සාස්පාන සමතුලිතව පැවතිය හැකි බව පෙන්වන්න.

 $ho=\pi a\sigma$ බව දී ඇත. සාස්පාන, B කෙළවරෙන් නිදහසේ එල්ලා ඇති විට BA යටි අත් සිරස සමඟ සාදන කෝණය ද සොයන්න.

17.(a) පෙට්ටියක, පාටින් හැර අන් සෑම අයුරකින් ම සමාන වූ රතු බෝල 6ක්, කොළ බෝල 3ක් හා නිල්බෝල 3ක් අඩංගු වේ. සසමභාවී ලෙස බෝලයක් පෙට්ටියෙන් ඉවතට ගනු ලැබේ. බෝලය නිල් එකක් වීමේ සම්භාවිතාව සොයන්න. ඉවතට ගත් බෝලය කොළ හෝ රතු නම් අමතර රතු බෝලයක් හා අමතර නිල් බෝලයක් මුල් බෝලය සමඟම පෙට්ටියට එකතු කරනු ලැබේ. ඉවතට ගත් බෝලය නිල් නම් පුතිස්ථාපනයක් නොමැත. දැන්, සසම්භාවී ලෙස දෙවන බෝලයක් පෙට්ටියෙන් ඉවතට ගනු ලැබේ. ඉවතට ගත් දෙවන බෝලය නිල් එකක් වීමේ සම්භාවිතාව කුමක් ද?

ඉවතට ගත් දෙවන බෝලය නිල් එකක් බව දී ඇති විට, ඉවතට ගත් පළමු බෝලය නිල් එකක් වීමේ සම්භාවිතාව සොයන්න.

(b) සිසුන් 100 ක් විභාගයකදී ලබා ගත් ලකුණු පහත වගුවේ දී ඇත.

ලකුණු	5 - 19	20 - 34	35 - 49	50 - 64	65 - 79	80 - 94
මධා ලකුණ (x_i)	12	27	42	57	72	87
සංඛාාතය (f_i)	10	20	30	15	15	10

 $y_i = rac{1}{15} \left(x_i - 42
ight)$, පරිණාමනය භාවිතයෙන් මෙම ලකුණු වාාප්තියේ මධානාය සහ විචලතාව

නිමානය කරන්න.

තවත් සිසුන් 100 ක් එම විභාගයටම ලබාගත් ලකුණුවල මධානාය සහ විචලතාව පිළිවෙළින් 40 හා 15 වේ. මුළු සිසුන් 200 ම මෙම විභාගය සඳහා ලබාගත් ලකුණුවල මධානාය හා විචලතාව නිමානය කරන්න.

* * *

