G.C.E. (A.L.) Support Seminar - 2016 Combined Mathematics - Paper I Answer Guide

Part A

1. Let
$$f(n) = 4^n + 15n - 1$$
; $n \in \mathbb{Z}^+$

When
$$n = 1$$
, $f(1) = 4 + 15 - 1 = 18 = 9 \times 2$

 \therefore f(1) is divisible by 9.

 \therefore The statement is true when n = 1.

Let us assume that the given expression is divisible by 9 when n = p, $p \in \mathbb{Z}^+$

That is,
$$f(p) = 4^p + 15p - 1 = 9k$$
; $k \in \mathbb{Z}^+$. (5)

$$f(p+1) = 4^{p+1} + 15(p+1) - 1$$

$$= 4 \cdot 4^{p} + 15p + 15 - 1$$

$$= 4 [9k - 15p + 1] + 15p + 15 - 1$$

$$= 4 \times 9k - 45p + 18$$

$$= 9 [4k - 5p + 2]$$

$$= 9 \lambda; \lambda = 4k - 5p + 2 \in \mathbb{Z}^{+}$$

- \therefore f(p+1) is divisible by 9.
- \therefore The statement is true when n = p + 1 (5)
- \therefore By the Principle of Mathematical Induction, the given expression is divisible by 9 for all positive integers n. 5

2.
$$\left(\sqrt{2} + 7^{\frac{1}{5}}\right)^{10} = \sum_{r=0}^{10} {C_r \left(2^{\frac{1}{2}}\right)^{10-r} \left(7^{\frac{1}{5}}\right)^r}$$

$$T_r = {}^{10}C_{r-1} \left(2\right)^{\frac{11-r}{2}} \left(7\right)^{\frac{r-1}{5}}$$
; here $1 \le r \le 11$.

Since 2 and 7 are primes, for a term to be rational 11 - r = 2p and r - 1 = 5q;

where $p, q \in \mathbb{Z}^+$. (5)

That is
$$r \in \{1, 3, 5, 7, 9, 11\} \cap \{1, 6, 11\}$$

 $\therefore r = 1 \text{ or } 11.$

:. The sum of the rational terms =
$${}^{10}C_{0}2^{5} + {}^{10}C_{10}7^{2} = 32 + 49 = 81$$

Γ

3. The number of ways in which a group of 5 can be formed without restriction

$$= {}^{14}C_{5}$$
 $= 2002 \quad \boxed{5}$

The number of groups with 5 boys

The number of groups with 5 girls

$$= {}^{6}C_{5}$$

$$= {}^{6}C_{5} - {}^{8}C_{5} + {}^{6}C_{5}$$

... The number of ways in which a group of 5 can be formed such that both sexes are represented in the group

$$= 2002 - 56 - 6$$
 (5)

y (imaginary) 4.

As indicated in the figure, the point which corresponds to the complex number $Z = Z_0$ such that

Arg
$$Z = \frac{\pi}{4}$$
 and Arg $(Z - 3) = \frac{\pi}{2}$ is P . (5) According to the figure $\theta = \frac{\pi}{4}$

:. Arg
$$(Z_0 - 6i) = \frac{7\pi}{4}$$
 5

25

25

 $\lim_{x \to 0} \frac{(1+kx)^2 - (1-kx)^2}{\sqrt{1+k^2x} - \sqrt{1-k^2x}}$ 5.

$$= \lim_{x \to 0} \frac{1 + 2kx + k^2x^2 - 1 + 2kx - k^2x^2}{(1 + k^2x) - (1 - k^2x)} \times \left(\sqrt{1 + k^2x} + \sqrt{1 - k^2x}\right)$$
 (10)

$$= \lim_{x \to 0} \frac{4kx}{2k^2x} \left(\sqrt{1 + k^2x} + \sqrt{1 - k^2x} \right) ; k, x \neq 0$$

$$= \frac{2}{k} \lim_{x \to 0} \left(\sqrt{1 + k^2 x} + \sqrt{1 - k^2 x} \right) = \left(\frac{2}{k} \right) \times 2 = \frac{4}{k}$$
 5

$$\frac{4}{k} = 1$$
 (5)

$$\therefore k = 4$$

6.

Area
$$= \int_{0}^{2} \left\{ (4 - 2x) - (x - 2)^{2} \right\} dx$$

$$= \int_{0}^{2} (4 - 2x) dx - \int_{0}^{2} (x - 2)^{2} dx$$

$$= \left[4x - \frac{2x^{2}}{2} \right]_{0}^{2} - \left[\frac{(x - 2)^{3}}{3} \right]_{0}^{2}$$

$$= (8 - 4) - \left[0 + \frac{8}{3} \right]$$

$$= 4 - \frac{8}{3}$$

$$= \frac{4}{3}$$

5 25

7. Differentiating with respect to t,

$$\frac{\mathrm{d}x}{\mathrm{d}t} = 2t \qquad \qquad \frac{\mathrm{d}y}{\mathrm{d}t} = 3at^2 - 2t \qquad \qquad \boxed{5}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x}$$

$$\frac{dy}{dx} = (3at^2 - 2t) \cdot \frac{1}{2t} = \frac{3at - 2}{2} ; t \neq 0$$
 5

$$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{t=1} = \frac{3a-2}{2}, \quad \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{t=-1} = \frac{-3a-2}{2} \quad \left(\mathbf{5}\right)$$

Since the tangents are perpendicular to each other,

$$\left(\frac{3a-2}{2}\right) \quad \left(\frac{-3a-2}{2}\right) = -1$$

$$9a^2 - 4 = 4 \implies a^2 = 8/9$$

Since
$$a > 0$$
, $a = \frac{2\sqrt{2}}{3}$ (5)

8.

$$E = (3, -2)$$

Since AB is perpendicular to CE,

$$m_{AB} \times m_{CE} = -1.$$

$$\therefore -1 \times \left(\frac{-2+t}{3-3t}\right) = -1 \boxed{5}$$

$$\Rightarrow t = \frac{5}{4}$$

$$\Rightarrow t = \frac{5}{4}$$

$$\therefore C = \left(\frac{15}{4}, -\frac{5}{4}\right)$$
5

Let $D = (\overline{x}, \overline{y})$. Then,

$$\overline{x} = 2 \times 3 - 3t = 6 - 3 \times \frac{5}{4} = \frac{9}{4}$$

$$\overline{y} = 2 \times -2 + t = -4 + \frac{5}{4} = -\frac{11}{4}$$

$$\therefore D = \left(\frac{9}{4}, -\frac{11}{4}\right) \qquad \boxed{5}$$

$$\therefore D = \left(\frac{9}{4}, -\frac{11}{4}\right)$$

9.

Let $S = x^2 + y^2 + 2gx + 2fy + c = 0$ be a required circle.

Since the circle touches the x and y axes, C = (h,h)

Furthermore, since the line 3x - 4y + 12 = 0 touches the circle,

$$\left| \frac{3h - 4h + 12}{\sqrt{3^2 + 4^2}} \right| = |h|$$

$$|-h+12| = 5|h|$$

$$\Leftrightarrow$$
 $(-h+12) = \pm 5h$

$$\therefore h = -3 \text{ or } h = 2.$$

: the equations of the circles are

$$(x-2)^2 + (y-2)^2 = 2^2$$

$$(x+3)^2 + (y+3)^2 = 3^2$$

10. $\cot \alpha - \tan \alpha$

$$= \frac{1}{\tan \alpha} - \tan \alpha$$

$$= \frac{1 - \tan^2 \alpha}{\tan \alpha}$$

$$= \frac{2(1 - \tan^2 \alpha)}{2 \tan \alpha} = \frac{2}{\tan 2\alpha}$$

$$=$$
 2 cot 2α

$$\therefore \cot 2\alpha - \tan 2\alpha = 2 \cot 4\alpha \qquad \underline{\qquad}$$

$$\cot 4\alpha - \tan 4\alpha = 2 \cot 8\alpha$$

From
$$1 + 2 \times 2 + 4 \times 3$$

$$\cot \alpha - \tan \alpha - 2 \tan 2 \alpha - 4 \tan 4 \alpha = 8 \cot 8 \alpha$$

(10)

$$\cot \alpha = \tan \alpha + 2 \tan 2 \alpha + 4 \tan 4 \alpha + 8 \cot 8 \alpha$$

25

Part B

11. (a)
$$ax^2 + bx + c = 0$$

$$a\left[x^2 + \frac{bx}{a} + \frac{c}{a}\right] = 0$$

$$a\left[\left(x+\frac{b}{2a}\right)^2 - \frac{b^2}{4a^2} + \frac{c}{a}\right] = 0$$

$$a\left[\left(x + \frac{b}{2a}\right)^2 - \frac{(b^2 - 4ac)}{4a^2}\right] = 0$$

The condition to have coincident roots is $b^2 - 4ac = 0$.

20

$$\frac{a}{x+c} + \frac{b}{x-c} = \frac{k}{2x}$$

$$\frac{a(x-c)+b(x+c)}{x^2-c^2} = \frac{k}{2x}$$

$$x^{2}[k-2a-2b]-2(bc-ac)x-kc^{2}=0$$

(10)

For coincident roots,

$$4(bc - ac)^2 - 4(k - 2a - 2b)(-kc^2) = 0$$
 (10)

That is,
$$k^2 - 2(a+b)k + (b-a)^2 = 0$$

[5]

If k_1 and k_2 are the roots of the above equation, then

$$k_1 + k_2 = 2(a+b)$$
 (5) $k_1 k_2 = (b-a)^2$ (5)

$$k_1 k_2 = (b-a)^2$$

$$(k_1 - k_2)^2 = (k_1 + k_2)^2 - 4k_1k_2$$
$$= 4(a + b)^2 - 4(b - a)^2$$

$$= 4(a+b)^2 - 4(b-a)$$

= 16ab

$$\therefore |k_1 - k_2| = 4\sqrt{ab}$$

(10

(b)
$$f(x) = (\lambda + 1)x^2 + (6 - 3\lambda)x + (20 - 12\lambda)$$

- (i) f(x) is linear when $\lambda = -1$.

(ii) Let the roots be
$$\alpha$$
 and $-\alpha$.

Then
$$\alpha + (-\alpha) = -\frac{(6-3\lambda)}{(\lambda+1)}$$

$$\therefore$$
 0 = 6 - 3 λ . Hence λ = 2.

(iii)
$$f(x) = h - b(x - a)^2 = h - b(x^2 - 2ax + a^2) = -bx^2 + 2abx + (h - ba^2)$$

 $f(x) = (\lambda + 1)x^2 + (6 - 3\lambda)x + (20 - 12\lambda)$

$$\therefore \text{ by comparing the coefficients, } -b = \lambda + 1 \implies b = -(\lambda + 1) \qquad \boxed{1}$$

$$2ab = 6 - 3\lambda \implies a = -\frac{3(2 - \lambda)}{2(\lambda + 1)} \qquad \boxed{2}$$

$$h - ba^2 = 20 - 12\lambda \Rightarrow h = 4(5 - 3\lambda) - \frac{9}{4} \frac{(2 - \lambda)^2}{(\lambda + 1)}$$
 (10)

Since the maximum value of f(x) occurs at x = 2, we obtain that a = 2.

$$(2)$$
 \Rightarrow $4(\lambda + 1) = -(6 - 3\lambda) \Rightarrow 4\lambda + 4 = -6 + 3\lambda \Rightarrow \lambda = -10$

$$h = 4(5+30) - \frac{9}{4} \frac{(2+10)^2}{(-10+1)}$$
 10

 \therefore the maximum value of f(x) = 176

(10)

75

12. (a) Since the solution set of the inequality |l - 5x| < |kx - 3| is $\{x \mid -2 < x < 4/9\}$, the two graphs are as illustrated below

- $(1) \quad y = |l 5x|$
- $(2) \quad y = |kx 3|$

For point
$$A: l+10 = 2k+3$$
 (5)
 $l-2k = -7$ (i)

For point
$$B: -l + 5 \cdot \frac{4}{9} = -k \cdot \frac{4}{9} + 3$$
 (5)

$$-9l + 4k = 7$$
 (ii) (5)

by (i) and (ii)
$$l = 1$$
, (5) $k = 4$

(b)
$$S_n = \frac{3n}{2n+1}$$
 5

$$\lim_{n \to \infty} S_n = \frac{3}{2}$$
 5

The limit is finite. 5

Therefore, the series is convergent. (5)

$$U_{r} = S_{r} - S_{r-1}$$

$$= \frac{3r}{2r+1} - \frac{3(r-1)}{2r-1}$$
(5)

$$U_r = \frac{3}{4r^2 - 1} \tag{5}$$

Let
$$S_n' = \sum_{r=1}^n r^2 \frac{3}{4r^2 - 1}$$
 (5)

$$= \sum_{r=1}^{n} \frac{\frac{3}{4}(4r^2 - 1) + \frac{3}{4}}{(4r^2 - 1)}$$
 5

$$= \sum_{r=1}^{n} \frac{3}{4} + \frac{1}{4} \sum_{r=1}^{n} \frac{3}{4r^2 - 1}$$
 (10)

$$= \frac{3n}{4} + \frac{1}{4} S_n$$
 (5)

$$= \frac{3n}{4} + \frac{1}{4} \frac{3n}{(2n+1)}$$
 5

$$= \frac{3n}{4} \left\{ 1 + \frac{1}{2n+1} \right\}$$
 (5)

$$= \frac{3n(n+1)}{2(2n+1)}$$
 5

Therefore
$$\lim_{n \to \infty} \sum_{r=1}^{n} r^2 U_r = \lim_{n \to \infty} \frac{3n}{4} \left\{ 1 + \frac{1}{2n+1} \right\}$$

$$= \infty \qquad \boxed{5}$$

The limit is not finite. 5

: the series is not convergent. (5)

13. (a)
$$\det A = \begin{vmatrix} 3 & p \\ -2 & -3 \end{vmatrix} = -9 + 2p$$
 5

 A^{-1} exists only if det $A \neq 0$.

That is, if
$$p \neq 9/2$$
 (5)

$$A^{-1} = \frac{1}{(2p-9)} \begin{bmatrix} -3 & -p \\ 2 & 3 \end{bmatrix}$$
 5

$$A^{-1} = A$$

$$\frac{1}{(2p-9)} \begin{bmatrix} -3 & -p \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 3 & p \\ -2 & -3 \end{bmatrix}$$
 (5)

Comparing the corresponding elements,

$$-\frac{3}{2p-9} = 3 \qquad \frac{-p}{2p-9} = p \qquad \boxed{5}$$

$$\frac{2}{2p-9} = -2 , \frac{3}{2p-9} = -3$$
 (5)

$$5 \qquad 5$$

$$\Rightarrow 2p - 9 = -1 \text{ and } p [1 + 2p - 9] = 0$$

Since
$$p \neq 0$$
 we have that $p = 4$ $\boxed{5}$

Therefore,
$$A = \begin{bmatrix} 3 & 4 \\ -2 & -3 \end{bmatrix}$$

$$\Rightarrow A A^{-1} = A \cdot A = A^{2}$$

$$\therefore I = A^{2}$$
(5)

$$\Rightarrow 0 = A^2 - I$$

$$\Rightarrow 0 = (A - I)(A + I); I^{2} = I$$
 5

This is of the form, 0 = BC,

where
$$B = A - I = \begin{bmatrix} 3 & 4 \\ -2 & -3 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & 4 \\ -2 & -4 \end{bmatrix} = 2 \begin{bmatrix} 1 & 2 \\ -1 & -2 \end{bmatrix}$$

and
$$C = A + I = \begin{bmatrix} 3 & 4 \\ -2 & -3 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 4 & 4 \\ -2 & -2 \end{bmatrix} = 2 \begin{bmatrix} 2 & 2 \\ -1 & -1 \end{bmatrix}$$
5

75

(b) (i) Let
$$Z = x + iy$$
, where $x, y \in \mathbb{R}$

$$Z \overline{Z} = (x + iy) (x - iy)$$

$$= x^{2} + y^{2}$$

$$= \left(\sqrt{x^{2} + y^{2}}\right)^{2} = |Z|^{2}$$

$$\therefore Z \overline{Z} = |Z|^2.$$

(ii) Let $Z_1 = x_1 + iy_1$ and $Z_2 = x_2 + iy_2$ where $x_1, x_2, y_1, y_2 \in \mathbb{R}$.

$$Z_{1}Z_{2} = (x_{1} + iy_{1}) (x_{2} + iy_{2})$$

$$= x_{1}x_{2} + i x_{1}y_{2} + i y_{1}x_{2} + i^{2}y_{1}y_{2}$$

$$= (x_{1}x_{2} - y_{1}y_{2}) + i (x_{1}y_{2} + y_{1}x_{2})$$

$$(5)$$

$$\overline{Z_1}\overline{Z_2} = \overline{Z_1}\overline{Z_2}$$

(iii)
$$\left| \frac{\overline{Z}_{1} - 2\overline{Z}_{2}}{2 - Z_{1}\overline{Z}_{2}} \right| = 1$$

$$\Rightarrow \left| \overline{Z}_{1} - 2\overline{Z}_{2} \right| = \left| 2 - Z_{1}\overline{Z}_{2} \right|$$

$$\Rightarrow \left| \overline{Z}_{1} - 2\overline{Z}_{2} \right|^{2} = \left| 2 - Z_{1}\overline{Z}_{2} \right|^{2}$$

$$\Rightarrow \left(\overline{Z}_{1} - 2\overline{Z}_{2} \right) \left(\overline{Z}_{1} - 2\overline{Z}_{2} \right) = \left(2 - Z_{1}\overline{Z}_{2} \right) \left(\overline{2 - Z_{1}\overline{Z}_{2}} \right)$$

$$\Rightarrow \left(\overline{Z}_{1} - 2\overline{Z}_{2} \right) \left(\overline{Z}_{1} - 2\overline{Z}_{2} \right) = \left(2 - Z_{1}\overline{Z}_{2} \right) \left(\overline{2 - Z_{1}\overline{Z}_{2}} \right)$$

$$5$$

$$\Rightarrow (\overline{Z}_1 - 2\overline{Z}_2)(Z_1 - 2Z_2) = (2 - Z_1\overline{Z}_2)(2 - \overline{Z}_1Z_2)$$
 (5)

$$Z_{1}\overline{Z}_{1} - 2\overline{Z}_{1}Z_{2} - 2\overline{Z}_{2}Z_{1} + 4Z_{2}\overline{Z}_{2} = 4 - 2\overline{Z}_{1}Z_{2} - 2Z_{1}\overline{Z}_{2} + Z_{1}\overline{Z}_{1}Z_{2}\overline{Z}_{2}$$

$$|Z_{1}|^{2} + 4|Z_{2}|^{2} = 4 + |Z_{1}|^{2} |Z_{2}|^{2}$$

$$|Z_{1}|^{2} + 4|Z_{2}|^{2} - |Z_{1}|^{2} \cdot |Z_{2}|^{2} - 4 = 0$$

$$|Z_{1}|^{2} (1 - |Z_{2}|^{2}) - 4 (1 - |Z_{2}|^{2}) = 0$$

$$(1 - |Z_{2}|^{2}) (|Z_{1}|^{2} - 4) = 0$$

$$\therefore |Z_{1}|^{2} = 4$$
Since $|Z_{1}| > 0$, $|Z_{1}| = 2$

$$5$$

(c) |Z-3| < 2 Arg $(Z-3) = \frac{\pi}{3}$ Imaginary axis Imaginary axis $0 \quad (1,0) \quad (3,0)$ Real axis

... The locus of the point *P* which represents the complex number *Z* such that |Z-3| < 2 and Arg $(Z-3) = \frac{\pi}{3}$;

(5,0)

Real axis

14. (a)
$$y = (\sin x)^x$$
 $0 \le x \le \frac{\pi}{2}$

$$\ln y = x \ln |\sin x| \tag{1}$$

$$\frac{1}{v} \frac{\mathrm{d}y}{\mathrm{d}x} = \ln|\sin x| + x \cot x$$

$$\therefore \frac{dy}{dx} = \left[x \cot x + \ln(\sin x) \right] (\sin x)^{x}$$

25

(b) Volume of the tank =
$$\pi x^2 y + \frac{2}{3} \pi x^3$$

$$\therefore \pi x^2 y + \frac{2}{3} \pi x^3 = 45\pi$$

$$\therefore 45 \qquad = x^2 (y + \frac{2}{3} x)$$

$$y = \frac{45}{x^2} - \frac{2}{3}x$$
 5

Surface area of the tank

$$A = 2\pi x^{2} + \pi x^{2} + 2\pi xy$$

$$A = 3\pi x^{2} + 2\pi xy$$

$$A = 3\pi x^{2} + 2\pi x \left(\frac{45}{x^{2}} - \frac{2}{3}x\right)$$

$$A = 3\pi x^{2} + \frac{90\pi}{x} - \frac{4\pi}{3}x^{2}$$

$$A = \frac{5\pi}{3}x^{2} + \frac{90\pi}{x}$$

$$5$$

$$\frac{dA}{dx} = \frac{10\pi x}{3} - \frac{90\pi}{x^2}$$

$$= \frac{10\pi (x^3 - 27)}{3x^2}$$

$$= \frac{10\pi}{3x^2} (x - 3) (x^2 + 3x + 9)$$
 5

$$\frac{dA}{dx} = 0 \text{ when } x = 3. \quad (5)$$

X	0 < x < 3	3 < <i>x</i>
$\frac{\mathrm{d}A}{\mathrm{d}x}$	< 0	> 0

5

 \therefore The surface area is minimum when x = 3.

$$y = \frac{45}{9} - \frac{6}{3}$$

$$= 3$$
 (5)

(c)
$$f(x) = \frac{a}{(x-1)^2} + \frac{b}{(x+1)}$$

Since f'(0) = 0,

$$2a - b = 0$$
 _____ (5)

Form
$$(1)$$
 and (2) , $a = \frac{2}{3}$, $b = \frac{4}{3}$

$$f'(x) = -\frac{4}{3} \frac{1}{(x-1)^3} - \frac{4}{3(x+1)^2}$$

$$= -\frac{4}{3} \left\{ \frac{(x+1)^2 + (x-1)^3}{(x-1)^3 (x+1)^2} \right\}$$

$$= -\frac{4}{3} \left[\frac{x^3 - 2x^2 + 5x}{(x-1)^3 (x+1)^2} \right]$$

$$= -\frac{4x}{3} \left[\frac{x^2 - 2x + 5}{(x-1)^3 (x+1)^2} \right]$$

$$= -\frac{4x}{3} \left[\frac{(x-1)^2 + 4}{(x-1)^3 (x+1)^2} \right]$$

Since $(x-1)^2 + 4 > 0$ for all $x \in \mathbb{R}$, we have that f'(x) = 0 if and only if x = 0.

X	$-\infty < x < -1$	-1 < x < 0	0 < x < 1	1 < <i>x</i> < ∞	
f'(x)	< 0	< 0	> 0	< 0	
	f decreases	f decreases	f increases	f decreases	

10

The function f has a relative minimum at x = 0. (5)Then f(0) = 2.

When $x \longrightarrow \pm \infty$ we have that $f(x) \longrightarrow 0$.

$$x \longrightarrow -1^{-}, f(x) \longrightarrow -\infty$$

$$x \longrightarrow -1^{+}, f(x) \longrightarrow +\infty$$

$$x \longrightarrow 1^{-}, f(x) \longrightarrow +\infty$$

$$x \longrightarrow 1^{+}, f(x) \longrightarrow +\infty$$

$$1 \longrightarrow 1^{+}, f(x) \longrightarrow +\infty$$

15. (a)
$$I = \int_{0}^{1} \frac{dx}{(2+x)^{1/2} (2-x)^{3/2}} = \int_{0}^{1} \frac{dx}{(4-x^2)^{1/2} (2-x)}$$

By substituting $x = 2 \sin \theta$. (5)
$$dx = 2 \cos \theta \ d\theta \ (5)$$

$$x = 0, \sin \theta = 0$$

$$\theta = 0$$

$$x = 1, \sin \theta = \frac{1}{2}$$

$$\theta = \frac{\pi}{6}$$

$$I = \int_{0}^{\pi/6} \frac{2 \cos \theta}{(4-4\sin^2 \theta)^{1/2} (2-2\sin \theta)} \ d\theta$$

$$= \int_{0}^{\pi/6} \frac{2 \cos \theta}{2 \cos \theta \ 2(1-\sin \theta)} \ d\theta$$

$$= \frac{1}{2} \int_{0}^{\pi/6} \frac{1+\sin \theta}{\cos^2 \theta} \ d\theta = \frac{1}{2} \int_{0}^{\pi/6} \sec^2 d\theta \ + \frac{1}{2} \int_{0}^{\pi/6} \sec \theta \tan \theta \ d\theta$$
(5)
$$= \frac{1}{2} \left[\tan \theta \right]_{0}^{\pi/6} + \frac{1}{2} \left[\sec \theta \right]_{0}^{\pi/6}$$
(5)

$$= \frac{1}{2} \left[\frac{1}{\sqrt{3}} + \frac{5}{\sqrt{3}} - 1 \right] = \frac{\sqrt{3} - 1}{2}$$
 5

50

(b)
$$G(x) = \frac{A}{x+2} + \frac{Bx+C}{x^2+8}$$
 5

$$1 = A(x^2 + 8) + (Bx + C)(x + 2)$$
 5

Coefficient of
$$x^2: 0 = A + B \implies A = -B$$

Coefficient of
$$x^2: 0 = A + B \Rightarrow A = -B$$

Coefficient of $x: 0 = 2B + C \Rightarrow C = -2B$ 5

Constant:
$$1 = 8A + 2C$$
 5

$$1 = -8B - 4B \implies 12B = -1$$

$$\Rightarrow B = -\frac{1}{12}$$
 5

$$A = \frac{1}{12}, \quad C = \frac{1}{6}$$

$$g(x) = \int \frac{1}{(x+2)(x^2+8)} dx$$

$$g(x) = \frac{1}{12} \int \frac{1}{(x+2)} dx - \frac{1}{12} \int \frac{x}{(x^2+8)} dx + \frac{1}{6} \int \frac{1}{(x^2+8)} dx$$
 5

$$= \frac{1}{12} \ln |x+2| - \frac{1}{24} \ln (x^2+8) + \frac{1}{6} \tan^{-1} \left(\frac{x}{2\sqrt{2}}\right) + C$$

$$= \frac{1}{24} \ln \left[\frac{(x+2)^2}{x^2+8} \right] + \frac{1}{6} \frac{1}{2\sqrt{2}} \tan^{-1} \left(\frac{x}{2\sqrt{2}} \right) + C$$

$$= \frac{1}{24} \ln \left[\frac{(x+2)^2}{x^2+8} \right] + \frac{1}{12\sqrt{2}} \tan^{-1} \left(\frac{x}{2\sqrt{2}} \right) + C$$

(c)
$$I_n = \int x^n \sin x \, dx$$
$$= \int -x^n \frac{d}{dx} (\cos x)$$

$$= -x^n \cos x + \int (\cos x) nx^{n-1} dx \qquad \boxed{10}$$

$$= -x^{n} \cos x + n \int x^{n-1} \frac{d}{dx} (\sin x)$$

$$= -x^{n} \cos x + n \left\{ x^{n-1} \sin x - \int \sin x (n-1) x^{n-2} dx \right\}$$

$$= -x^{n} \cos x + nx^{n-1} \sin x - n(n-1) I_{n-2}$$
(5)

$$I_n + n(n-1) I_{n-2} = x^{n-1} [n \sin x - x \cos x]$$

40

16. (a)

Let $P(\overline{x}, \overline{y})$ be an arbitrary point on any one of the angle bisectors.

The equations of the angle bisectors;

$$\frac{4x + y + 3}{\sqrt{4^2 + 1^2}} = \pm \frac{x + 4y - 3}{\sqrt{4^2 + 1^2}}$$

$$+ : 3x - 3y + 6 = 0 \Rightarrow x - y + 2 = 0$$

$$- : 5x + 5y = 0 \Rightarrow x + y = 0$$
5

By solving x + y = 0 and x - y + 2 = 0 we obtain

$$x = -1, y = 1$$
Let $A = (-1, 1)$

B = (0, 2) lies on the line given by x - y + 2 = 0.

Let P = (x, y) be a point on the line given by x + y = 0

Since PA is perpendicular to PB,

$$\left(\frac{y-1}{x+1}\right) \times 1 = -1$$
 5

$$\frac{y-1}{-1} = \frac{x+1}{1} = t; t \text{ is a parameter.}$$

$$\therefore x = -1 + t, \quad y = 1 - t$$

Let T be the value of t corresponding to the point D which lies on x + y = 0 and is such that AD = AB.

Then
$$D = (-1 + T, 1 - T)$$
 (5)

$$AD^2 = AB^2 \Rightarrow T^2 + T^2 = 1^2 + 1^2 = 2$$
 5

$$T = \pm 1 \quad \boxed{5}$$

$$D = (0, 0) \text{ or } (-2, +2)$$

When D = (0, 0) the equation of the side CD is

$$x - y = 0$$

When D' = (-2, +2) the equation of the side CD' is

$$x - y + 4 = 0$$

The equation of the side BC and the side BC' is

$$x + y -2 = 0$$

100

(b)
$$S^1 = x^2 + y^2 - 2x + 4y - 3 = 0$$

Let
$$S = x^2 + y^2 + 2gx + 2fy + c = 0$$
. Here g, f, c are constants.

Since S = 0 is bisected by $S^1 = 0$, the centre of S = 0 lies on the line

$$S^1 - S = 0$$
 given by

$$-2x(g+1) - 2y(f-2) - 3 - c = 0$$

$$\therefore 2(g)(g+1)+2(f)(f-2)-c-3=0$$

Since the circle S = 0 passes through the point (1, 1),

$$1^2 + 1^2 + 2g + 2f + c = 0$$

$$\therefore c = -2g - 2f - 2 \qquad (2)$$

From (1) and (2),

$$2g^2 + 2g + 2f^2 - 4f - (-2g - 2f - 2) - 3 = 0$$
 5

$$2g^2 + 2f^2 + 4g - 2f - 1 = 0$$
 (5)

$$2(-g)^{2} + 2(-f)^{2} - 4(-g) + 2(-f) - 1 = 0$$

... the point (-g, -f) lies on the circle $2x^2 + 2y^2 - 4x + 2y - 1 = 0$ 5

The centre of this circle is $(1, -\frac{1}{2})$ and its radius is $\boxed{5}$

$$r = \sqrt{1^2 + \frac{1}{4} + \frac{1}{2}} = \sqrt{\frac{7}{4}}$$

$$\frac{\sqrt{7}}{2}$$

(5)

50

17. (a)

$$a = BC = BD + DC$$

 $a = c \cos B + b \cos C$

(5)

$$a = b \cos C + 0$$

$$= b \cos C + c \cos 90^{\circ}$$

$$= b \cos C + c \cos B$$

5

$$a = BC = CD - BD$$

$$= b \cos C - c \cos (\pi - B)$$

$$= b \cos C + c \cos B$$
5

Similarly, $b = a \cos C + c \cos A$

$$a\cos C = b - c\cos A$$

$$a^2 \cos^2 C = b^2 - 2bc \cos A + c^2 \cos^2 A$$

(10)

$$a^2 - a^2 \sin^2 C = b^2 + c^2 - 2bc \cos A - c^2 \sin^2 A$$

$$a^{2} + c^{2} \sin^{2} A - a^{2} \sin^{2} C = b^{2} + c^{2} - 2bc \cos A \text{ ; since } \frac{a}{\sin A} = \frac{c}{\sin C}$$

$$= 0$$

$$\therefore a^2 = b^2 + c^2 - 2bc \cos A$$
$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

a, b, c are in an arithmetic progression. Therefore,

$$a + c = 2b \qquad 5$$

$$b \cos C + c \cos B + a \cos B + b \cos A = 2b \qquad 5$$

$$\cos A + \cos C + 2\cos B = 2$$

$$2\cos A + \cos C + 2\cos B = 2$$

$$2\cos\left(\frac{A+C}{2}\right)\cos\left(\frac{A-C}{2}\right) = 2(1-\cos B)$$
5

$$2\cos\left(\frac{\pi}{2} - \frac{B}{2}\right) \cos\left(\frac{A - C}{2}\right) = 4\sin^2\frac{B}{2}$$

$$\cos\left(\frac{A-C}{2}\right) = 2\sin\frac{B}{2} \qquad \boxed{5}$$

25

(b)
$$0 < x, y < \frac{\pi}{2}$$

$$\therefore 0 < \frac{\pi}{2} - y < \frac{\pi}{2}$$
 5

$$\sin x > \cos y = \sin\left(\frac{\pi}{2} - y\right)$$
 (5)

$$\sin x > \sin \left(\frac{\pi}{2} - y\right)$$

As the angle increases in the domain $\left(0, \frac{\pi}{2}\right)$, the sine value also increases.

Therefore,

$$\therefore x > \frac{\pi}{2} - y \qquad \boxed{5}$$

$$x + y > \frac{\pi}{2}$$

(c)
$$f(x) = 3\cos^2 x + 8\sin x \cos x - 3\sin^2 x$$
$$= 3\cos 2x + 4\sin 2x \qquad \boxed{5}$$
$$= 5(\frac{3}{5}\cos 2x + \frac{4}{5}\sin 2x) \qquad \boxed{5}$$
$$= 5(\sin\alpha\cos 2x + \cos\alpha\sin 2x)$$
$$= 5\sin(2x + \alpha)$$

$$= A\sin(2x + \alpha)$$
 (5)

Here A=5, and α is an acute angle such that $\tan\alpha=\frac{3}{4}$. $f(x)=\frac{5}{2}$

$$5\sin(2x + \alpha) = \frac{5}{2}$$

$$\sin(2x + \alpha) = \frac{1}{2} = \sin\frac{\pi}{6} \quad \boxed{5}$$

$$2x + \alpha = n \pi + (-1)^n \frac{\pi}{6}$$
 5

$$x = \frac{n\pi}{2} - \frac{\alpha}{2} + (-1)^n \frac{\pi}{12}, \text{ here } n \in \mathbb{Z}$$

$$f(x) = 5\sin(2x + \alpha)$$

Maximum f(x) = 5; $x = \frac{\pi}{4} - \frac{\alpha}{2}$

Minimum f(x) = -5; $x = -\frac{\pi}{4} - \frac{\alpha}{2}$ (Since $\alpha < \frac{\pi}{4}$)

G.C.E. (A.L.) Support Seminar - 2016 **Combined Mathematics - Paper II Answer Guide**

Part A

Applying $v^2 = u^2 + 2as$ to $m \vee 1$ 1. $v^2 = 2gh$ $\therefore v = \sqrt{2gh}$

5

Applying $I = \Delta(mv)$;

To
$$P$$
 and $m \neq -J = (2m + m) v_1 - mv - 2m \times 0$

$$\therefore -J = 3mv_1 - mv - 1$$

To $Q
\downarrow$ $J = 2mv_1 - 0 \longrightarrow$ From \bigcirc and \bigcirc ,

$$v_1 = \frac{v}{5} = \frac{\sqrt{2gh}}{5}$$

$$J = \frac{2m}{5} \sqrt{2gh}$$

25

2. The volume of water that is ejected in a second

$$= 8 (0.005) \text{ m}^3$$

= 0.040 m³

 $= 10^3 \times 0.040 \text{ kg}$ The mass of water that is ejected in a second

$$= 40 \text{ kg}$$

 $= mgh + \frac{1}{2} mv^2$ Work done by the pump in a second

$$= (40 \times 10 \times 4) + \frac{1}{2} \times 40 \times 8^{2}$$
(5)

= 2880 js

:. the power of the pump

3.

When t = T

$$\mathbf{v} = \mathbf{u} + \mathbf{g} T$$

$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$$

 $gT \sin \theta = u$

 $T = \frac{u}{g\sin\theta}$

$$=\frac{u}{g}\csc\theta$$

25

4.

By apply the law of conservation of momentum to the system

$$5mu - kmu = \frac{kmu}{2} - \frac{5mu}{2}$$
$$10 - 2k = k - 5$$

$$\therefore k = 5$$

From Newton's law of restitution

$$\frac{u}{2} + \frac{5u}{2} = e(u + 5u)$$

$$3u = 6ue$$

$$\frac{1}{2} = e$$

$$I = \Delta(m\underline{y})$$

$$= -m. \frac{5u}{2} - m. 5u$$

$$I = \frac{15mu}{2} \quad (5)$$

$$\therefore (2\mathbf{i} + 3\mathbf{j}) \cdot (\lambda \mathbf{i} + \mu \mathbf{j}) = 0$$

$$2\lambda + 3\mu = 0 \qquad \boxed{1}$$

Since $|\underline{\boldsymbol{b}}| = 1$, we have $\lambda^2 + \mu^2 = 1$ 2 (5)

From
$$(1)$$
 and (2) , $\mu = \pm \frac{2}{\sqrt{13}}$

Since
$$\mu > 0, \mu = \sqrt{\frac{2}{13}}$$

- 3 -

From
$$(1)$$
, $\lambda = -\sqrt{\frac{3}{13}}$

25

6. The object is in limiting equilibrium. By Lami's Theorem,

$$\frac{P}{\sin[\pi - (\alpha + \lambda)]} = \frac{w}{\sin[\frac{\pi}{2} - (\theta - \lambda)]}$$
 5

$$P = \frac{w \sin(\lambda + \alpha)}{\cos(\theta - \lambda)}$$

For *P* to be minimum, $(\theta - \lambda)$ should be maximum.

That is,
$$\theta = \lambda (5)$$

 $\therefore P \text{ (minimum)} = w \sin (\lambda + \alpha) (5)$

25

Let $P(A) = \frac{1}{3}$ and $P(B) = \frac{1}{4}$. 7.

$$(A) \longrightarrow 1^{st}$$
 (First) $(B) \longrightarrow 2^{nd}$ (Second)

$$X = (A \cap B') \cup (A' \cap B)$$

But $(A \cap B') \cap (A' \cap B) = \phi$

$$\therefore P(X) = P(A \cap B') + P(A' \cap B)$$

(Since the events are independent)

= P(A) P(B') + P(A') P(B)

$$=\frac{1}{3}\times\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{3}\right).\frac{1}{4}$$

$$=\frac{1}{4}+\frac{2}{3}\times\frac{1}{4}=\left(\frac{1}{4}\times\frac{5}{3}\right)=\frac{5}{12}$$

(ii)
$$P(A \mid X) = \frac{P(A \cap X)}{P(X)} = \frac{P(A) P(B')}{P(X)}$$

(5)

$$= \frac{\frac{1}{3} \times \frac{3}{4}}{\frac{5}{12}} = \frac{3}{5}$$

25

9.
$$\overline{x} = 5$$
 and $s_x = 2$
(i) $y_i \in \{12, 13, 14, 15, 16, 17, 18\}$
Let $y_i = x_i + 10$.
Here $x_i \in \{2, 3, 4, 5, 6, 7, 8\}$
 $\therefore \overline{y} = \overline{x} + 10 = 5 + 10 = 15$
and $s_y = s_x = 2$

(ii)
$$y_i \in \{20, 30, 40, 50, 60, 70, 80\}$$

Let $y_i = 10x_i$
Here $x_i \in \{2, 3, 4, 5, 6, 7, 8\}$
 $\therefore \overline{y} = 10 \overline{x}$
 $= 10 \times 5 = 50$
and $s_y = 10 s_x = 10 \times 2 = 20$

(iii) Let
$$y_i = ax_i + b$$
.
Then $\overline{y} = a\overline{x} + b = 5a + b$

$$s_y^2 = a^2 s_x^2$$

$$s_y = |a| s_x$$

$$= 2|a|$$
5

1		١.
	U	J.

u_{i}	-3	-2	-1	0	1	2
f_{i}	5	10	25	30	20	10
$f_i u_i$	-15	-20	-25	0	20	20

(5)

$$\overline{u} = \frac{\sum f_i u_i}{\sum f_i} = -\frac{20}{100} = -\frac{1}{5}$$

$$u_i = \frac{x_i - 35}{a}$$

$$\therefore \ \overline{x} = a \overline{u} + 35$$

$$= -\frac{a}{5} + 35$$

$$a = 10$$

Intervals	0 – 10	10 – 20	20 - 30	30 - 40	40 - 50	50 - 60
f_{i}	5	10	25	30	20	10

25

11. (a)

To collide,

Vertical displacement of P = Vertical displacement of Q + 10

Vertical displacement of P – Vertical displacement of Q = 10

(10)

$$5T = 10$$

$$T = 2$$

$$5$$

Horizontal displacement of P = Horizontal displacement of Q + 4 Horizontal displacement of P - Horizontal displacement Q = 4

$$(1-a) 2 = 4$$
 5
 $1-a = 2$
 $a = -1$

60

(b)
$$v(S, E) = \longrightarrow u$$

 $v(P, S) = \bigcirc v$
 $v(P, E) = v(P, S) + v(S, E)$

Out
$$\underbrace{v(P, E)} = \underbrace{u \Rightarrow \overrightarrow{BC_1} + \overrightarrow{AB} = \overrightarrow{AC_1}}$$
5

$$\frac{\operatorname{In}}{v(P,E)} = \underbrace{u \Rightarrow \overrightarrow{BC_2} + \overrightarrow{AB} = \overrightarrow{AC_2}}$$
5

Hence, the circle with diameter C_1C_2 passes through the point A.

Furthermore, since the midpoint of C_1C_2 is B,

$$BC_1 = BC_2 = BA = u$$

v = u

$$BAC_{1} = \frac{\pi}{4} - \frac{\alpha}{2} \text{ and } BAC_{2} = \frac{\pi}{4} + \frac{\alpha}{2}$$

If the total time for the journey is *t*,

$$t = \frac{S_1 I}{AC_1} + \frac{S_2 I}{AC_2}$$

$$= \frac{S_1 I \sin\left(\frac{\pi}{4} - \frac{\alpha}{2}\right)}{AC_1 \sin\left(\frac{\pi}{4} - \frac{\alpha}{2}\right)} + \frac{S_2 I \sin\left(\frac{\pi}{4} + \frac{\alpha}{2}\right)}{AC_2 \sin\left(\frac{\pi}{4} + \frac{\alpha}{2}\right)}$$

$$= \frac{d}{v \cos \alpha} + \frac{d}{v \cos \alpha} = \frac{2d}{u \cos \alpha} \quad (\because v = u)$$

$$\boxed{5}$$

90

12. (a) By the law of conservation of energy;

$$\frac{1}{2}mu^2 - mga = mga\cos\theta + \frac{1}{2}mv^2$$

$$v^2 - u^2 + 2ga(1 + \cos\theta) = 0$$

$$Applying F = ma \text{ to } m$$

$$R + mg\cos\theta = \frac{mv^2}{a}$$

$$R + mg\cos\theta = \frac{m}{a} \left[u^2 - 2ga (1 + \cos\theta) \right]$$

$$R + mg\cos\theta = \frac{m}{a} \left[u^2 - 2ga (1 + \cos\theta) \right]$$

$$R = \frac{mu^2}{a} - mg(2 + 3\cos\theta)$$

If the particle leaves the surface when OA makes an angle of α with the upward vertical, then at that point R = 0.

$$\therefore u^2 - 2ga - 3ga \cos \alpha = 0$$

$$\cos \alpha = \frac{u^2 - 2ga}{3ga} > 0 \quad (\because u^2 > 2ga)$$

 $\therefore \alpha$ is an acute angle.

Furthermore, since $0 < \alpha < \frac{\pi}{2}$, we have that $0 < \cos \alpha < 1$.

$$\frac{u^2 - 2ga}{3ga} < 1$$

$$u^2 < 5ga$$

When the particle of mass m leaves the surface, $\cos \alpha = \frac{1}{\sqrt{3}}$.

$$\frac{1}{\sqrt{3}} = \frac{u^2 - 2ga}{3ga}$$

$$u^2 - 2ga = \sqrt{3} ga$$

$$u^2 = (2 + \sqrt{3}) ga$$

Then the velocity
$$v^2 = u^2 - 2ga (1 + \frac{1}{\sqrt{3}}) = 2ga + \sqrt{3} ga - 2ga - \frac{2ga}{\sqrt{3}} = \frac{ga}{\sqrt{3}}$$

After the particle of mass m leaves the surface of the sphere, its motion is that of a projectile.

In the ensuing motion, if the time taken to travel a horizontal distance $a \sin \alpha$ is t_0 .

$$a \sin \alpha = (v \cos \alpha) t_0$$
 5

Then the distance traveled upward $y = (v \sin \alpha) t_0 - \frac{1}{2} g t_0^2$

$$y = \frac{v\sin\alpha \times a\sin\alpha}{v\cos\alpha} - \frac{1}{2} \frac{ga^2\sin^2\alpha}{v^2\cos^2\alpha}$$

$$= \frac{\frac{2}{3}a}{\frac{1}{\sqrt{3}}} - \frac{ga^2}{\frac{2ga}{\sqrt{3}}} \frac{\frac{2}{3}}{\frac{1}{3}}$$

$$= \frac{2a}{\sqrt{3}} - \sqrt{3}a$$

$$= -a\cos\alpha$$

$$(5)$$

Since the particle of mass m has travelled a distance of $a \cos \alpha$ downward when it passes the vertical line through O, it passes through the centre O of the sphere.

80

(b)

$$\mathbf{v}(P,O) = \underbrace{\begin{array}{c} \dot{y} \\ \dot{y} \\ \dot{z} \\ \mathbf{v}(Q,O) = \underbrace{\begin{array}{c} +\dot{y} \\ -\frac{\pi}{2} - \theta \\ \end{array}}_{\dot{z}} \dot{x}$$

$$\begin{array}{c} R_1 - \underbrace{\begin{array}{c} \dot{y} & C \\ T & T \\ \end{array}}_{\dot{z}} R_2$$

$$\begin{array}{c} \mu \\ \mu \\ \lambda \\ \end{array}$$

Applying the law of conservation of momentum;

$$7m \dot{x} = m \dot{y} (\cos \theta + \sin \theta)$$

$$7\dot{x} = \dot{y} \left(\frac{3}{5} + \frac{4}{5}\right)$$

$$5\dot{x} = \dot{y}$$

$$1$$

Applying the law of conservation of energy;

$$\frac{1}{2} 5m \dot{x}^{2} + \frac{1}{2} m \{ (\dot{x} - \dot{y} \cos \theta)^{2} + (\dot{y} \sin \theta)^{2} \} \quad \boxed{20}$$

$$+ \frac{1}{2} m \{ (\dot{x} - \dot{y} \sin \theta)^{2} + (\dot{y} \cos \theta)^{2} \} - mgy \sin \theta - mg(l - y) \cos \theta = \text{constant}$$

$$5 \dot{x}^{2} + \left\{ \dot{x}^{2} + \dot{y}^{2} - 2 \dot{x} \dot{y} \cos \theta \right\} + \left\{ \dot{x}^{2} + \dot{y}^{2} - 2 \dot{x} \dot{y} \sin \theta \right\}$$

$$-2gy \sin \theta + 2gy \cos \theta = \text{constant}$$

$$7\dot{x}^{2} + 2\dot{y}^{2} - 2\dot{x}\dot{y}\left(\frac{4}{5} + \frac{3}{5}\right) - 2gy\frac{4}{5} + 2gy\frac{3}{5} = \text{constant}$$

$$35\dot{x}^{2} + 10\dot{y}^{2} - 14\dot{x}\dot{y} - 2gy = \text{constant}$$
25

From
$$(1)$$
 and (2)
 $35\dot{x}^2 + 250\dot{x}^2 - 70\dot{x}^2 - 2gy = constant$
 $215\dot{x}^2 - 2gy = constant$

Differentiating with respect to t,

$$430 \dot{x} \cdot \ddot{x} - 2g\dot{y} = 0$$

$$430 \dot{x} \cdot \ddot{x} - 2g \cdot 5\dot{x} = 0 \quad (\because \dot{x} \neq 0)$$

$$\therefore \ddot{x} = \frac{g}{43}$$

Applying F = ma to P

$$\lim_{\theta \to 0} \sin \theta - T = m(\ddot{y} - \ddot{x} \cos \theta)$$
 5

$$T = mg \sin \theta - m (5\ddot{x} - \ddot{x} \cos \theta)$$

$$= mg \frac{4}{5} - m\ddot{x} (5 - \frac{3}{5})$$

$$= \frac{4mg}{5} - m \cdot \frac{1}{43}g \cdot \frac{22}{5}$$

$$= \frac{2mg}{5} \left\{ 2 - \frac{11}{43} \right\}$$

$$= \frac{2mg}{5} \times \frac{75}{43}$$

$$= \frac{30mg}{43}$$
(5)

15

13. If the tension in the string when it is extended a length x from its natural length is T, then

Applying F = ma to the motion of the particle;

$$mg \sin 30^{\circ} - T = m\ddot{x}$$

$$\log \times \frac{1}{2} - \frac{2\log x}{a} = \sin x$$

20

$$x = \frac{a}{4} + A \cot \omega t + B \sin \omega t \underline{\hspace{1cm}} \underline{$$

$$\ddot{x} = -A\omega^2 \cos \omega t - B\omega^2 \sin \omega t \quad \underline{\hspace{1cm}}$$

$$= -\omega^2 (A\cos\omega t + B\omega\sin\omega t)$$

By considering
$$(1)$$
 and (5) $\omega^2 = \frac{2g}{a}$. (5)

 $\omega = \sqrt{\frac{2g}{a}}$

$$t = 0$$
 when $\dot{x} = 0$.

From
$$(3)$$
, $0 = B\omega$

Since $\omega \neq 0$ we have that B = 0. (5)

$$x = a \text{ when } t = 0$$
 (5)

40

From
$$(2)$$
, $a - \frac{a}{4} = A \Rightarrow A = \frac{3a}{4}(5)$

 $\therefore x = \frac{3a}{4} \cos \omega t + \frac{a}{4}$

$$x - \frac{a}{4} = \frac{3a}{4} \cos \omega t$$

The centre of the oscillation is given by $x - \frac{a}{4} = 0$.

That is,
$$x = \frac{a}{4}$$
 is the centre. $\boxed{5}$

When $\dot{x} = 0$ at the amplitude, let $t = t_1$.

$$0 = -A\omega \sin \omega t_1$$

$$\sin \omega t_1 = 0$$

$$\omega t_1 = n\pi ; n \in \mathbb{Z}_0^+$$
 (5)

$$x - \frac{a}{4} = \frac{3a}{4} \cos \omega t_1$$

$$x - \frac{a}{4} = \pm \frac{3a}{4} \qquad \qquad ($$

20

:. the amplitude of the simple harmonic motion of the particle = $\frac{3a}{4}$ (5)

Let the velocity of the particle when it first arrives at the natural length of the string be V.

Then
$$x = 0$$
. (5)

$$\frac{3\lambda}{4}$$
 $\cos \omega t = -\frac{\lambda}{4}$

$$\cos \omega t = -\frac{1}{3}$$

$$V = -A\omega \sin \omega t$$

$$=-\frac{3a}{4}\sqrt{\frac{2g}{a}}$$
 $\sqrt{1-\cos^2\omega t}$

$$= -\frac{3a}{4} \sqrt{\frac{2g}{a}} \sqrt{\frac{8}{9}} \quad \boxed{5} = -\frac{3a}{4} \sqrt{\frac{2g}{a}} \cdot \frac{2\sqrt{2}}{3}$$

$$=-\sqrt{ag}$$

The velocity of the particle when x = 0 is $\sqrt[h]{\sqrt{ag}}$.

20

Let t_0 be the time when the particle first arrives at the natural length of the string.

Then
$$x = 0$$
. (5)

$$-\frac{a}{4} = \frac{3a}{4} \cos \omega t_0$$

$$\cos \omega t_0 = -\frac{1}{3}$$

$$\omega t_0 = \pi - \cos^{-1}(\frac{1}{3})$$

$$t_0 = \frac{1}{\omega} \left[\pi - \cos^{-1}(\frac{1}{3}) \right] = \sqrt{\frac{a}{2g}} \left[\pi - \cos^{-1}(\frac{1}{3}) \right]$$
 (5)

The particle travels up to the point O under gravity.

If the time taken for the particle to travel from B to O is t_2 ,

$$S = ut + \frac{1}{2} at^2$$

$$S = a, u = \sqrt{ag}, a = -g \sin 30^\circ$$

$$a = \sqrt{ag}t_2 - \frac{1}{2}\frac{g}{2}t_2^2$$

[5]

$$\frac{g}{4} t_2^2 - \sqrt{ag} t_2 + a = 0$$

$$t_2 = \sqrt{ag} \pm \sqrt{ag - 4\frac{g}{4}a}$$

$$\frac{g}{2}$$

$$t_2 = 2\sqrt{\frac{a}{g}}$$

[5]

 \therefore the time taken to travel to $O = t_0 + t_2$,

$$= \sqrt{\frac{a}{2g}} (\pi - \cos^{-1}(\frac{1}{3})) + 2\sqrt{\frac{a}{g}}$$

$$= \sqrt{\frac{a}{2g}} \left[\pi - \cos^{-1}(\frac{1}{3}) + 2\sqrt{2} \right]$$

30

The string is at its maximum length at A; that is when x = a,

$$T_{\rm A} = \frac{\lambda a}{a}$$
 (5)

$$T_{\rm A} = 2mg$$
 (5)

10

14. (a) (i)
$$|a| = |b| = |c| = 1$$

If $(\underline{a} + 2\underline{b}) \perp (5\underline{a} - 4\underline{b})$,

$$(\underline{a} + 2\underline{b}) \cdot (5\underline{a} - 4\underline{b}) = 0$$
 5

$$5\underline{a} \cdot \underline{a} + 10\underline{b} \cdot \underline{a} - 4\underline{a} \cdot \underline{b} - 8\underline{b} \cdot \underline{b} = 0$$

$$5|\underline{a}|^2 + 10\underline{a} \cdot \underline{b} - 4\underline{a} \cdot \underline{b} - 8|\underline{b}|^2 = 0$$

$$5 + 6\underline{a} \cdot \underline{b} - 8 = 0$$

$$6a \cdot b = 3$$

$$\frac{\underline{a} \cdot \underline{b}}{|\underline{a}| |\underline{b}| \cos \theta} = \frac{1}{2}$$

$$1 \times 1 \cos \theta = \frac{1}{2} \Rightarrow \theta = 60^{\circ}$$
 (5)

(ii)
$$|\underline{a} - \underline{b}|^2 + |\underline{b} - \underline{c}|^2 + |\underline{c} - \underline{a}|^2$$

$$= (\underline{a} - \underline{b}) \cdot (\underline{a} - \underline{b}) + (\underline{b} - \underline{c}) \cdot (\underline{b} - \underline{c}) + (\underline{c} - \underline{a}) \cdot (\underline{c} - \underline{a}) \quad (\underline{5})$$

$$= |\underline{a}|^2 + |\underline{b}|^2 - 2\underline{a} \cdot \underline{b} + |\underline{b}|^2 + |\underline{c}|^2 - 2\underline{b} \cdot \underline{c} + |\underline{c}|^2 + |\underline{a}|^2 - 2\underline{c} \cdot \underline{a} \quad (\underline{5})$$

$$= 6 - 2(\underline{a} \cdot \underline{b} + \underline{b} \cdot \underline{c} + \underline{c} \cdot \underline{a}) \quad (\underline{5}) \quad (\underline{a} + \underline{b} + \underline{b} \cdot \underline{c} + \underline{c} \cdot \underline{a}) = 6 - (|\underline{a} - \underline{b}|^2 + |\underline{b} - \underline{c}|^2 + |\underline{c} - \underline{a}|^2) \quad (\underline{5}) \quad (\underline{a} + \underline{b} + \underline{c})^2 \ge 0 \quad (\underline{5}) \quad (\underline{a} + \underline{b} + \underline{c}) \cdot (\underline{a} + \underline{b} + \underline{c}) \ge 0 \quad (\underline{5}) \quad (\underline{a} + \underline{b} + \underline{c}) \cdot (\underline{a} + \underline{b} + \underline{c}) \ge 0 \quad (\underline{5}) \quad (\underline{a} + \underline{b} + \underline{c}) \cdot (\underline{a} + \underline{b} + \underline{c}) \ge 0 \quad (\underline{5}) \quad (\underline{a} + \underline{b} + \underline{c} \cdot \underline{c} + \underline{c} \cdot \underline{a}) \ge 0 \quad (\underline{5}) \quad (\underline$$

 $3 + 6 - (|\underline{a} - b|^2 + |\underline{b} - c|^2 + |\underline{c} - a|^2) \ge 0$

 $|a-b|^2 + |b-c|^2 + |c-a|^2 \le 9$

(i)
$$X = 4 - 3 + 5\sqrt{2} \cos 45^{\circ} - 2\sqrt{2} \cos 45^{\circ}$$
 (5)
 $= 4N$
 $Y = 2 - 8 + 5\sqrt{2} \cos 45^{\circ} + 2\sqrt{2} \cos 45^{\circ}$ (5)
 $= 1N$
If the resultant is R ,
 $R = \sqrt{X^2 + Y^2} = \sqrt{4^2 + 1^2}$
 $= \sqrt{17} N$ (5)

If the resultant makes an angle $\alpha \,$ with the horizontal, $\tan \alpha \, = \frac{1}{4}$

$$\alpha = \tan^{-1}\left(\frac{1}{4}\right)$$
 5

If the point at which the line of action of the resultant intersects AB is E, let AE = x.

A = E (Coincides)

The line of action of the resultant passes through A.

C

В

15

15

 \therefore for the system of forces to be in equilibrium, a force of $\sqrt{17}$ N should be introduced at A in the direction \overrightarrow{FA} .

To reduce the system to a couple of magnitude 39Nm acting in the sense ABC,

a force of $\sqrt{17}$ N should be introduced at a distance, say y, from A along

(iii) The couple that should be introduced to reduce the system to a single force acting at B;

a single force acting at B;
=
$$\sqrt{17} \times BA \sin \alpha$$
 5

$$= \sqrt{17} \times 2 \times \frac{1}{\sqrt{17}} = 2Nm \qquad \boxed{5}$$

Aliter If the couple that should be introduced is M,

$$M - \sqrt{17} \times 2 \sin \alpha = 0$$

 $M = \sqrt{17} \times 2 \times \frac{1}{\sqrt{17}} = 2 \text{ Nm}$

(i) Taking moments about B for BC

> $W a \sin \theta = 2W a \cos \theta$ **10** $\tan \theta = 2$

Considering the equilibrium of BC,

$$\begin{array}{cccc}
 & X = W & & 5 \\
 & & Y = W & & 5
\end{array}$$

$$\therefore R_{\rm B} = \sqrt{W^2 + W^2}$$

$$= \sqrt{2} W$$
5

20

 $R_{\rm B}$ makes an angle of $\tan^{-1} 1 = \frac{\pi}{4}$ with the horizontal

 $AB \supset \widehat{A}$

X.
$$2 \lg \cos \alpha = W \lg \sin \alpha + y$$
. $2 \lg \sin \alpha$ (10)

 $W 2 \cos \alpha = W \sin \alpha + W. 2 \sin \alpha$

$$\frac{2}{3} = \tan \alpha$$

$$\alpha = \tan^{-1}\left(\frac{2}{3}\right) \quad \boxed{5}$$

15

By considering the equilibrium of AB,

$$X_{1} = X = W$$

$$Y_{1} = 2W$$

$$R_{A} = \sqrt{X_{1}^{2} + Y_{1}^{2}}$$

$$= \sqrt{5} W$$

$$5$$

 $R_{\rm A}$ makes an angle of tan ⁻¹(2) with the horizontal

R

20

Let the length of a rod (other than DE) be 2a.

(i) Considering the system, \sqrt{A}

$$R 2\lambda x - 10 \times 3\lambda x - 5 \times 5\lambda x = 0 \qquad \boxed{5}$$

$$R = \frac{55}{2} \,\mathrm{N} \, \left(\mathbf{5} \right)$$

:. the vertical force acting at $E = \frac{55}{2}$ N

The vertical component of the reaction at the hinge $A = \sqrt{\frac{25}{2}} N$ (5) Horizontal component = 0

20

Rod	Magnitude	Stress
AE	$\frac{25\sqrt{3}}{6}$ N	Thrust
AB	$\frac{25\sqrt{3}}{3}$ N	Tension
BE	$\frac{25\sqrt{3}}{3}$ N	Thrust
ВС	$\frac{25\sqrt{3}}{3}$ N	Tension
CE	$\frac{20\sqrt{3}}{3}$ N	Thrust
CD	$5\sqrt{3}$	Tension
ED	10 N	Thrust

55

By symmetry, the centre of mass lies on the x axis.

$$\overline{y} = 0$$
 5

$$\bar{x} = \int_{0}^{a} \frac{\pi \rho x (a^{2} - x^{2}) dx}{\pi \rho (a^{2} - x^{2}) dx}$$
 (5)

$$= \frac{\left[\frac{a^2x^2}{2} - \frac{x^4}{4}\right]_0^a}{\left[a^2x - \frac{x^3}{3}\right]_0^a}$$

$$a^2x - \frac{x^3}{3}\bigg]_0^a$$

$$=\frac{3a}{8}$$

$$\therefore \quad G = \left(\frac{3a}{8}, \ 0\right)$$

By symmetry, the centre of mass lies on Ox.

Object	Mass	Distance from O
		to the centre of mass
Hemisphere	$\frac{2}{3}\pi a^3 \rho$	$\frac{3a}{8}$
Hemisphere	$\frac{2}{3}\pi(ka)^3\rho$	<u>3ka</u>
which is	3	8
removed		
Remaining	$\frac{2}{3}\pi a^3 \rho (1-k^3)$	${x}$
portion	3 22 5 (1 %)	λ

$$\overline{x} = \frac{\frac{2}{3} \pi a^3 \rho \frac{3a}{8} - \frac{2}{3} \pi k^3 a^3 \rho \frac{3ka}{8}}{\frac{2}{3} \pi a^3 \rho (1 - k^3)}$$
(15)

$$= \frac{\frac{3a}{8}(1-k^4)}{(1-k^3)} = \frac{3a}{8}\frac{(1+k^2)(1-k)(1+k)}{(1-k)(1+k+k^2)}$$
$$= \frac{3a}{8}\frac{(1+k^2)(1+k)}{(1+k+k^2)} \qquad (10)$$

40

(b) Let the centre of mass be $G_1(\overline{x}_1, \overline{y}_1)$

When the hemisphere that is removed is attached to the remaining portion as shown in the figure, due to symmetry about Ox we have $\overline{y}_1 = 0$.

(i) Let the mass of the hemisphere that was removed be m, and the mass of the hemisphereof radius \underline{a} be M.

$$\frac{m}{M} = \frac{\frac{2\pi}{3} k^3 a^3 \rho}{\frac{2\pi}{3} a^3 \rho} = k^3 \quad (5)$$

 $m = Mk^3$

(ii) The distance from O to the centre of mass of the composite object is \bar{x}_1 .

$$\overline{x}_1 = \frac{(M-m)\overline{x} + m\left(-\frac{3}{8}ka\right)}{(M-m)+m}$$
 (15)

Since
$$(M-m) + m$$

$$\overline{x} = M\left(\frac{3a}{8}\right) - m\left(\frac{3}{8}ka\right), \qquad 5$$

$$\overline{x}_1 = M\left(\frac{3a}{8}\right) - m\left(\frac{3}{8}ka\right) - m\left(\frac{3}{8}ka\right)$$

$$= \frac{3a}{8} \frac{(M-2mk)}{M}$$

$$= \frac{3a}{8} \left(1 - \frac{2m}{M}k\right) \qquad (10)$$

The distance from O to $= \frac{3a}{8} (1 - 2k^4)$ the centre of mass of the composite object

30

(iii) The centre of mass G_1 should coincide

with O. That is, $\overline{x}_1 = 0$. (5)

$$\frac{3a}{8}(1-2k^4) = 0$$
 5

$$2k^4 = 1$$

$$k^2 = \pm \frac{1}{\sqrt{2}}$$

Since
$$k^2 > 0$$
, $k^2 = \frac{1}{\sqrt{2}}$

(10)

30

15

P(A) = 0.1, $P(A \cup B) = 0.37$ and P(C) = 0.2**17.** (a)

(i)
$$P(A \cup B) = P(A) + P(B) - P(A) P(B)$$

(Since A and B are independent)

$$0.37 = 0.1 + P(B) - 0.1 P(B)$$

$$0.37 - 0.1 = 0.9 P(B)$$

$$0.3 = P(B)$$

(ii)
$$P(B' | A') = \frac{P(B' \cap A')}{P(A')}$$

Here
$$P(B' \cap A') = P[(B \cup A)'] = 1 - P(A \cup B)$$

$$=$$
 1 - 0.37 $=$ 0.63

$$P(A') = 1 - P(A) = 1 - 0.1 = 0.9$$

$$\therefore P(B' \mid A') = \frac{0.63}{0.9} = 0.7$$

(iii)
$$P(A' \cap B' \cap C) = P(A') P(B') P(C)$$

 $= 0.9 \times 0.7 \times 0.2$
 $= 0.126$

(iv) $X : (A \cap B' \cap C') \cup (A' \cap B \cap C') \cup (A' \cap B' \cap C)$

$$P(X) = P(A \cap B' \cap C') + P(A' \cap B \cap C') + P(A' \cap B' \cap C)$$

$$= P(A) P(B') P(C') + P(A') P(B) P(C') + P(A') P(B') P(C)$$

$$= 0.1 \times 0.7 \times 0.8 + 0.9 \times 0.3 \times 0.8 + 0.9 \times 0.7 \times 0.2$$

$$= 0.398$$

$$\Rightarrow P(A \mid X) = \frac{P(A \cap X)}{P(X)}$$

$$= \frac{P(A \cap B' \cap C')}{P(X)}$$

$$= \frac{0.1 \times 0.7 \times 0.8}{0.398}$$

$$= \frac{56}{398}$$

$$= \frac{28}{199}$$

$$= \frac{28}{199}$$

$$= 10$$

(b) (i) (α) Mean $8 = \frac{\sum_{r=1}^{n} x_r}{n}$ (5)

Mean value of the marks
$$\bar{x} = \frac{28 + 56 + 23 + 94 + 8 + 5 + 13 + 846}{28}$$

$$= \frac{1073}{28}$$

$$= 38.32$$
5

(β) Since the number 94 should have been 49;

Thus the drop of mark = 45

Since the number 05 should have been 50;

(5)

Thus the rise of mark = 45

Therefore no change in the mean value.

(5)

Standard deviation =
$$\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$
 5

Variance
$$s_x^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n}$$

$$= \frac{\sum_{i=1}^n (x_i^2 - 2x_i \overline{x} + \overline{x}^2)}{n}$$

$$= \frac{\sum_{i=1}^n x_i^2}{n} - 2\overline{x} \frac{\sum x_i}{n} + \overline{x}^2$$

$$= \frac{\sum_{i=1}^n x_i^2}{n} - 2\overline{x}^2 + \overline{x}^2$$

$$= \frac{\sum_{i=1}^n x_i^2}{n} - \overline{x}^2$$

Let
$$X = \{x_1, x_2, ..., x_{20}\}$$
 and $Y = \{y_1, y_2, ..., y_{10}\}$.

Since
$$\sum_{i=1}^{20} x_i = 320$$
, $\sum_{i=1}^{20} x_i^2 = 5840$

and

$$\sum_{i=1}^{10} y_i = 130 , \qquad \sum_{i=1}^{10} y_i^2 = 2380$$
 5

$$\therefore \ \ \overline{x} = \frac{\sum_{i=1}^{\infty} x_i}{20} = \frac{320}{20} = 16 \quad \boxed{5}$$

and
$$s_x^2 = \frac{\sum_{i=1}^{20} x_i^2}{20} - 16^2 = \frac{5840}{20} - 16^2$$

$$= 292 - 256 = 36$$

$$\therefore s_x = 6$$

$$\overline{y} = \frac{\sum_{i=1}^{10} y_i}{10} = \frac{130}{10} = 13$$

$$s_y^2 = \frac{\sum_{i=1}^{10} y_i^2}{100} - 13^2 = \frac{2380}{10} - 169 = 69$$

$$\therefore s_y = 8.30$$
 (5)

Let
$$Z = X \cup Y$$
.

$$\overline{z} = \frac{\sum_{i=1}^{20} x_i + \sum_{i=1}^{10} y_i}{30}$$

$$= 320 + 130 = 15$$
5

PAPERMASTER.LK

$$s_z^2 = \frac{\sum_{i=1}^{20} x_i^2 + \sum_{i=1}^{10} y_i^2}{30} - \overline{z}^2$$

$$= 274 - 225 = 49$$

$$s_z = 7 {5}$$